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We study a simple generalization of Wilson’s SU(2) lattice gauge theory. In various
limits the model reduces to the usual SU(2), SO(3), or Z, models. Using Monte Carlo
techniques on a four-dimensional lattice, we follow the known SO(3) and Z, first-order
transitions into the phase diagram. They merge at a triple point and continue together to
a critical end point. The peak in the specific heat of the SU(2) model is a shadow of this

nearby singularity.

Monte Carlo studies with a lattice cutoff have
given strong evidence for quark confinement in the
asymptotically free SU(2) and SU(3) gauge theories.
Until quite recently the lore was that lattice gauge
theories based on non-Abelian gauge groups will
not, in four dimensions, show any phase transitions
separating a strong-coupling confining phase from
the perturbative weak-coupling domain of the con-
tinuum limit. However, discoveries of unexpected
transitions with the gauge groups SO(3), SU(4), and
SU(5) have clouded this issue.!?

The action used with a lattice cutoff (or indeed
with any regulator) is highly nonunique. Wilson’s
formulation® is particularly elegant and thus has
dominated research. As long as physics in the
continuum limit is itself unique, the choice of lat-
tice action is a matter of taste. However, when the
lattice spacing is not small, variation of the action
can modify the phase structure of the system.
Indeed, the SO(3) and SU(5) transitions may be ar-
tifacts of the simple Wilson action. The mere ex-
istence of a phase transition does not necessarily
imply a loss of confinement. A more general lat-
tice Lagrangian may permit continuation around
bothersome singularities.

With this motivation, we have studied a simple
generalization of Wilson’s model for the gauge
group SU(2). We find that it is indeed possible to
introduce a spurious transition in this theory. Our
action has a two-parameter coupling space in
which a critical point lies near to and is responsible
for the rapid crossover from strong- to weak-
coupling behavior in the conventional theory.

To stay as close as possible to the standard lat-
tice gauge theory, we use the variables U;; which
are elements of the gauge group and are associated
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with the nearest-neighbor bonds {(i,j)} of a four-
dimensional simple hypercubic lattice. We also
follow Wilson in keeping the action a function only
of plaquette variables. Thus we restict
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where the sum extends over all plaquettes O and

S is a function only of Up, an ordered product of
the four group elements about the square [J.
Gauge invariance leads us to assume that S is a
real class function of Ug. Any such function can
be expanded in characters

So=3BrReTrz(Up) , 2
R

where the sum is over all representations R of the
group, Try is the trace of U expressed in the
given representation, and By are arbitrary coeffi-
cients. We throw away the imaginary part to keep
the action real. The usual Wilson action keeps
only the fundamental representation in this sum.
Recently Manton* has suggested an alternative ac-
tion where S is the square of the distance of U
from the identity in the group manifold. This in
general involves all representations and has been
studied with Monte Carlo methods.’

In this paper we consider a two-parameter lattice
action obtained by considering only the fundamen-
tal and adjoint representations in Eq. (2). For
SU(2) we define our normalization such that

+B4[1-Tr,(Ug)/3], (3)

where Tr without a subscript is taken in the two-
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dimensional defining representation and Tr4 is in
the three-dimensional adjoint representation. Note
that for arbitrary SU(N) the adjoint trace is easily
found using the identity

Tr,U=|TrU|*—1. 4

We insert this action into a path integral or parti-
tion function

Z::deexp

~355]. (s)
[m]

where the integration is over all bond variables.
We shall see that this simple generalization of the
Wilson action gives rise to a rich phase struture.

This model has several interesting limits. When
B4 =0 it reduces to the usual SU(2) theory. When
B=0 the action only depends on the adjoint repre-
sentation, and corresponds to the standard Wilson
theory based on the gauge group SO(3). This
model is known' to have a first-order phase transi-
tion, which we confirm, at 8, =2.504+0.03.
Another interesting limit occurs on taking 8, to
infinity. This drives all the plaquette variables to
the identity in the adjoint representation. In the
fundamental representation, each Uy must then lie
in the center of the group,

Uge{+I}. (6)

This implies that under a gauge transformation all
the bond variables can also be placed in the center,
and we have the conventional Wegner Z, lattice
gauge theory® at inverse temperature 3. That
model is known to exhibit a striking first-order
phase transition at’

B=7In(14V2)=0.44... . (7

Thus at the outset we know that our model must
possess a nontrivial phase diagram, with first-order
lines entering from $=0.44, 4= 0 and =0,
B4=2.5.

We have used Monte Carlo simulation to follow
these lines into the (53,8,) plane. Our algorithm
follows Metropolis et al.® Each link variable in
turn is tentatively multiplied by a group element
randomly selected from a table of twenty. This
tentative change is accepted if a random number
uniformly selected in the interval (0,1) is larger
than the exponential of the change in the action.
This satisfies the detailed balance requirement
which ensures that an arbitrary ensemble of confi-
gurations will be brought closer to the Boltzmann
distribution defined by the exponentiated action.
One Monte Carlo iteration consists of applying this

algorithm ten times to one link and then similarly
touching all the other links of the lattice. The ele-
ments in the table were randomly selected with a

coupling-dependent weighting towards the identity.

A f34-dependent fraction of the elements was

selected near —I to assist convergence when the
Z, structure of the action is important. A new
table was generated after each sweep through the
lattice. Our boundary conditions were always
periodic and no gauge fixing was imposed.

* To check our results, we also studied our action
for the discrete subgroup of SU(2) defined by the
symmetries of an icosahedron.” For small 8, an
extra transition due to the discrete nature of this
subgroup was well separated from the interesting
structures in the SU(2) model. As one expects
from a simple two-state model for this “discrete-
ness” transition, the critical couplings (B€,BY) for
B4 <2 lie on an approximately straight line well fit
by

BC=6—2.455 . (8)

It is clear from this that when 3, is of order 2-3,
the discrete approximation strongly affects the
phase structure. In this region we must treat the
model using the full SU(2).

To monitor the behavior of this model, we mea-
sure separately the expectation of the two terms in
the action. Thus we define

P=(1—-Tr(Ug)/2) , ©

For a totally ordered lattice both these vanish
whereas for random Uj; they both equal unity.
Wherever =0 the Z, symmetry of the adjoint ac-
tion gives P =1 for any 8. At a few values of 3,
B4 we also measured rectangular Wilson loops, the
expectation of the trace of an ordered product of
U;; around a rectangle. These were measured in
both the fundamental and adjoint representation.
In Fig. 1(a) we show a thermal cycle in 3, for
B=0. The lattice was 5* sites in size and each
point represents P, after thirty iterations at the
given f34. The crosses represent cooling of the lat-
tice and the circles represent heating. Note the

. hysteresis effect due to the first-order phase transi-

tion in the SO(3) model. In Fig. 1(b) we show runs
of 100 iterations starting both random and ordered
at 34=2.5. Figure 1 represents an independent
confirmation of the results in Ref. (1).

Figure 2 displays a similar thermal cycle in
with B, fixed at 3.0. Here the order parameter P
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FIG. 1. (a) Thermal cycle in the SO(3) limit. Crosses
represent cooling and circles represent heating. (b) Evo-
lution of random and ordered configurations at 3,=2.5,

B=0.

clearly shows the Z, transition. At this finite 34,
the transition has moved from the value in Eq. (7)
to #=0.50+0.02. This shift to larger 3 is expect-
ed because decreasing 3, allows the system to be
more disordered. Note that the transition is nearly
unobservable in Py.

By performing several similar thermal cycles on
a 4* lattice we have followed both of these transi-
tions further into the (/3,8,) plane and have ob-
tained the phase diagram shown in Fig. 3. The Z,
and SO(3) transitions meet at a triple point at
B=0.55+0.03, B,=2.34+0.03. Figure 4 shows
three runs of one hundred iterations on a 5* lattice
at the triple point. The three initial conditions
were (1) ordered with every U; =1 (solid circles);
(2) with each Uj; selected totally randomly from
SU(2) (crosses); and (3) with each U;; chosen ran-
domly from Z,={+1} (open circles). The system
has three distinct stable phases at this point in cou-
pling space.
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FIG. 2. Thermal cycle in B at B, =3.0.

The third first-order line emerging from this tri-
ple point extends towards smaller 3, but ter-
minates at a critical end point before reaching the
B axis. By extrapolating the latent heats in P and
in P4 to vanishing values, we quote 3=1.48+0.05,

4 =0.90+0.03 as the coordinates of this new crit-

FIG. 3. The full phase diagram. The open circles
represent the location of the triple point and the critical
point. The solid circles trace out the first-order transi-
tion lines. The solid curves are drawn to guide the eye.
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FIG. 4. Three Monte Carlo runs at the triple point.

ical point in SU(2) lattice gauge theory.

The conventional SU(2) theory exhibits a narrow
but smooth peak in its specific heat'® at §=2.2.
This is directly at a naive extrapolation of the
above first-order transition line to the 3 axis. Thus
this peak may be regarded as a remnant of that
transition, a shadow of the nearby critical point.
Our interpretation is undoubtedly not unique as
other generalizations of the theory may also find
interesting structure. This picture is consistent
with and indeed supports the absence of a real
singularity in the standard Wilson theory.

Presumably the continum limit of the SU(2)
theory is unique for physical observables. The con-
nection between the bare field-theoretical coupling
constant and our parameters 3 and 3, follow from
an expansion of the action in powers of the cutoff

8o 2=B/4+2B4/3 . (11)

The continuum limit in this asymptotically free
theory requires taking go® to zero, but this can be
done along many paths in the (/3,8,) plane. Previ-
ous work has concentrated on the trajectory 3, =0,
B— . Along that path no singularities are en-
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countered, and thus confinement, present in strong
coupling, should persisit into the weak-coupling
domain. However, an equally justified path would
be, for example, f=B,— . In this case a first-
order phase transition occurs. Because one can
continue around it in our large-coupling-constant
space, this transition is not deconfining and is sim-
ply an artifact of the action choice. The recently
discovered first-order transition in SU(5) lattice
gauge theory may be of a similar nature. This can
be tested by adding a term with a negative 3, to
the action.

To test whether physical observables are indeed
independent of the path taken for a continuum lim-
it, we measured Wilson loops on an 8* lattice at
weak coupling for several values of 3,. The Wil-
son loop by itself is not an observable because of
ultraviolet divergences associated with its sharp
perimeter and corners. However it has been argued
that ratios of loops with identical perimeters and
number of corners but different shapes should be
finite in the continuum limit. With this motiva-

“ tion, we constructed the quantities

W(I,LJ)W(K,L)

R(I,J,K,L)= WILWUK)

(12)

‘where W (1,J) is the Wilson loop of dimensions /

by J in lattice units. Wishing to compare points
which give similar physics, we searched in 3 at
fixed B, for the points where R (2,2,3,3,) had the

fixed values 0.87 and 0.93. This gave rise to the

points in the (S,8,) plane shown in Fig. 5. In this
figure we also show the terminating first-order line
discussed above and the large-f3 transition from the
discrete approximation. The dashed lines represent
contours of constant bare charge from Eq. (11). If
physics is indeed similar at all these points, all ra-
tios R of Eq. (12) should match. In Fig. 6 we
show various such ratios as functions of 3,4 at the
R (2,2,3,3)~0.87 points from Fig. 5. To avoid
clutter we have not included error bars, which are
comparable to the scatter along the various curves.
The comparison is quite good considering that fin-
ite cutoff corrections are ignored. We remark that
if individual loops are compared without taking ra-
tios as in Eq. (12), their values are not constant
along these contours.

Note that in this comparison the bare charge is
not a constant. In Fig. 5 we varied g,* from less
than unity to nearly 4 while holding R (2,2,3,3)
fixed. This variation is permissible as the bare
charge is unobservable and depends on prescrip-
tion. This dependence can be characterized with
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FIG. 5. Points of constant “physics.” Solid circles
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R(2,2,3,3)=0.93.
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FIG. 6. Various loop ratios along the R(2,2,3,3)
=0.87 contour. Solid circles are from loops in the fun-
damental representation, open circles from the adjoint.

an asymptotic freedom scale Ay which depends on
B,. The quantity Ag is an integration constant of
the renormalization-group equation and is defined
as the lattice spacing and g, bécame small by

—71/27

1
A= > ?’ogoz}

xexp[ —1/(2ygo) [14+0(ge?)] . (13)

Here y, and y, are the first two coefficients in the
perturbative expansion of the Gell-Mann-Low func-
tion,'!

v(go)=a dgo/da =7, 80’ +7180°+0(g,") .(14)

For SU(2) we have

11

Yo= PYRER (15)
17

N=Gea (16)

Assuming that the constant R contours follow a
line of constant lattice spacing, we extract the 3
dependence for Ay shown in Fig. 7. Note that the
R(2,2,3,3)=0.93 and 0.87 results are consistent.
Remarkably, the addition of 3, can change the lat-
tice Ay by several orders of magnitude.

100 T T3

E I

E g :

10.0 = =

1.0 =

AoBy [ )

Ap(O)

0.l =

: :

0.0l = =
0.00!

-1.5 -1.0 -0.5 ¢} 0.5 10 1.5 2.0

FIG. 7. The 3, dependence of the renormalization
scale Ao(B4). The solid circles and open circles are
from R(2,2,3,3)=0.87 and 0.93, respectively.
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In conclusion, we have shown how a simple
modification of the Wilson action can introduce a
first-order phase transition separating the strong-
and weak-coupling domains in SU(2) lattice gauge
theory. The transition is not deconfining because it
can be continued around in a larger coupling space.
Our model has limits which select out Z,, the
center of the gauge group, and SO(3). A peculiar
isolated phase at large 8, and small B is represent-
ed by the weak-coupling domain of the SO(3)

model. We know of no convincing reason why this
phase must be isolated. Perhaps it too is connected
to the SU(2) strong-coupling phase in a yet larger
coupling parameter space.'?

ACKNOWLEDGMENT

We thank A. M. Polyakov for suggesting that
the action in Eq. (3) might be interesting.

1. G. Halliday and A. Schwimmer, Phys. Lett. 101B,
327 (1981); J. Greensite and B. Lautrup, Phys. Rev.
Lett. 47,9 (1981). ,

2M. Creutz, Phys. Rev. Lett. 46, 1441 (1981).

3K. Wilson, Phys. Rev. D 10, 2445 (1974).

4N. S. Manton, Phys. Lett. 96B, 328 (1980).

5C. B. Lang, C. Rebbi, P. Salomonson, and B. S.
Skagerstam, Phys. Lett. 101B, 173 (1981).

SF. J. Wegner, J. Math. Phys. 12, 2259 (1971).

M. Creutz, L. Jacobs, and C. Rebbi, Phys. Rev. Lett.
42, 1390 (1979).

8N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth,
A. H. Teller, and E. Teller, J. Chem. Phys. 21, 1087
(1953).

9C. Rebbi, Phys. Rev. D 21, 3350 (1980); D. Petcher and
D. H. Weingarten, Phys. Rev. D 22, 2465 (1980).

10B. Lautrup and M. Nauenberg, Phys. Rev. Lett. 45,
1755 (1980).

11M. Gell-Mann and F. E. Low, Phys. Rev. 95, 1300
(1954).

12], G. Halliday and A. Schimmer, Phys. Lett. 102B,
337 (1981).



