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ABSTRACT

A class of models for self organized critical phenomena possesses an
isomorphism between the recursive states under addition and the abelian
operator algebra on them. Several exact results follow, including the exis-
tence of a unique identity state, which when added to any configuration C
in the recursive set relaxes back to that configuration. In this relaxation

process, the number of topplings at any lattice site is independent of the

configuration C.
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I. Introduction

The concept of “self organized criticality” describes the tendency of strongly dissipative
systems to show relaxation behavior involving a wide range of length and time scales.! The
phenomenon is expected to appear widely; indeed, it has been looked for in such diverse
areas as earthquake structure? and economics.? The idea provides an alternative view of
complex behavior in systems with many degrees of freedom. It complements the concept
of “chaos,” wherein simple systems with a small number of degrees of freedom can display
quite complex behavior.

The prototypical example of self organized criticality is a sandpile. Adding sand slowly
to a heap of sand will result in the slopes increasing to a critical value, where an additional
grain will give rise to an unpredictable behavior. If the slope were too steep, one would
obtain a large avalanche and a collapse to a more stable configuration, while if it were less
steep the new sand will just accumulate to make the pile steeper. At the critical slope the
distribution of avalanches has no overall scale, but rather show a power law behavior. This
has been extensively discussed by several authors. 48

Ref. 1 presented a simple mathematical system to demonstrate this behavior. This is
a cellular automaton model formulated on a regular lattice, and uses an integer variable
on each site to represent the local sandpile slope. When the slope exceeds a critical value,
an avalanche ensues, with sand spilling onto neighboring sites, changing their local slopes.
Studies of this model gave evidence of a self organized critical state where the distribution
of avalanches was indeed a power law.

This particular model for self organized criticality was recently shown to have rather
remarkable properties.? In particular, the system is described in termsof an Abelian group.
If two grains of sand are added to the system in arbitrary locations, the resulting final state
is independent of the orders of addition and the intermediate relaxation steps. This result
enables an exact calculation of the number of states important in the self organized critical
state and determination of the average number of tumblings occurring at a site 4 given a
grain of sand has been added at site j. While this does not determine all critical properties
of interest, it suggests that further exact results may be found for this special model.

The main new results of this paper include the demonstration of an Isomeorphism

between the recursive (defined in Ref. 9 and below) subset of the states under this addition



and the operator algebra generated by sand addition. I show how to construct the unique
non-trivial state corresponding to the identity under this isomorphism. When this state
is added to any other state C' in the recursive set, the resulting state always relaxes back
to C. I also show that when any recursive state is added to the identity and the system
relaxed, the number of topplings at any site depends only on the site position and not on
the state being added.

The next section defines the model and several quantities useful in its description.
Section III is primarily a review of Ref. 9, and shows how operations of adding sand
form a discrete Abelian group. Section IV defines addition between states and shows
the isomorphism alluded to above. This section contains a simple algorithm for explicitly
constructing the identity state. Section V presents some results on the numbers of topplings

coming from the addition of various states. Section VI contains a few minor-conclusions.

II. Defining the model

For definiteness I consider a finite two dimensional rectangular lattice of size N, x Ny,
The total number of sites is N = N;N,. On each site i of this lattice is an integer value z;
representing the local slope. I will also loosely refer to z; as the amount of sand on site 1,

although the analogy with real sandpiles is perhaps better if it is regarded as a slope.

Definition 1.  The set G of general states is the set of configurations C specified by an

arbitrary integer z; on each lattice site 3.

This system is to be updated with a simple cellular automaton rule. The dynamics
involves a threshold value for the slope 27, Wherever the local slope z; is larger or equal
to this threshold value, the corresponding site is regarded as unstable. One updating
step consists of first determining the set of all unstable sites. Then simultaneously 4 is
subtracted from the unstable slopes and 1 is added to each unstable site’s neighbors. This
action on an unstable site is referred to as a “toppling.” -

Ref. 9 introduced a useful matrix A;; with integer elements representing the change in
the slope 2 at site ¢ resulting from a toppling at site 7. The indices in this matrix run over

the sites of the lattice. For the simple two dimensional rectangular geometry considered

here, 1 have



Definition 2. The toppling matrix is given as

o~

+4 i=j
Aij =4 =1 i and j nearest neighbors 1)
0  otherwise

Under a toppling at site j, the slope at site i becomes z; — A

There is nothing particularly special about the lattice geometry; indeed, the discussion
easily generalizes to other lattices and dimensions. On a Cayley tree the model can be
solved exactly.® The discussion in Ref. 9 is quitegeneral, requiring only that under a
toppling at a single site ¢, (1) that site has its slope decrease (Ai; > 0), (2) the slope at
any other site is either increased or unchanged (A;; > 0, ¢ 5 7), (3) the total amount of
sand in the system does not increase (3°; A; > 0), and (4) each site be connected through
topplings to some location where sand can be lost, such as at a, boundary (3; such that
2 Aij > 0). All results discussed here apply to this more general model. '

For the specific case in Eq. (1), whenever a site i away from the lattice edge undergoes
a toppling, the sum of slopes over all sites is conserved. Oxﬂy at the lattice boundaries can
sand be lost. Thus the details of this model depend crucially on the boundary conditions,
which I take to be open. A a toppling on the middle of an edge looses one grain of sand
and at a corner looses two.

The actual value of the threshold zy is unimportant to the dynamics. This can be

changed by merely adding a constant to all the z;. Thus without loss of generality |

consider
zr=4 _ (2)

With this convention, if all 2; are initially non-negative, they will remain so after any
addition of sand or number of updating steps. Thus it is also convenient to define the set

of non-negative states P:
Definition 3. P = {C € G|z > 0 Vi).

If the updating procedure finds no unstable sites, then the state C' is said to be stable,

and undergoes no changes. I thus am led to define the stable subset of P
Definition 4. & ={C € P| 2, £4 Vi }. is referred to as the set of stable states.

If a state has any z; larger or equal to zr = 4, it is called unstable.



One important state in S is the minimally stable state,)! which has all slopes just
below the threshold; that is

Definition 5. The minimally stable state C* is that stable state with z; = zp = 3 Vi

By construction, any addition of sand to C* will give an unstable state.
It is now convenient to introduce some notation for various operators which can be

applied to these states. First I define the operator «; to of add one grain of sand to the

slope at site ¢:

Definition 6. Given a state C € § and its attendant slopes 2, the state o;C € G is the

state with slopes z' where
= {z,-+1 T

%; otherwise
This procedure can be applied to any state, stable or not. Applied to a stable state, it
might or might not make that state unstable, depending on the previous value of z;.

The next useful operator t; represents a toppling at site 1:

Definition 7. Given a state C' and its attendant slopes zj, the state #;C is the state

with slopes z; where

r . ..
Zj —_ ZJ - A_“

The operator which updates the lattice one time step is now simply the product of ¢;

over all sites where the slope is unstable:

~ Definition 8.  The updating operator U applied to state C with slopes z gives the state
vc=[]&c
o

where

p: = {1 if 2 > 4
! 0 otherwise

Using U repeatedly, we can define the relaxation operator R. Applied to any state C,
this corresponds to repeatedly applying U until no more z; change. Both R and U have
no effect on any stable state.

At this point is not entirely clear that the operator R exists; that is, it might be that

the updating procedure enters a non-trivial cycle. We now prove that this is impossible.



Theorem 1. On any state C € P the updating procedure will always converge to a
stable state RC'.

Proof. We need only show that the updating rule cannot give rise to a nontrivial cycle of
unstable states. First note that a toppling in the interior of the lattice does not change the
total amount of sand Y i zi- A tumbling on the boundary, however, decreases this sum due
to sand falling off the edge. Thus this sum is non-increasing and will decrease whenever
there is a toppling on the boundary. Any cycle, therefore cannot have tumblings on the
boundary. Next note that any tumblings one site away from the boundary will increase the
sand contained on the boundary sites. Thus the sand in the boundary will monotonically
increase if there is any tumbling one site away. This cannot happen in a cycle, thus there
can be no tumblings on sites one step away from the edges. This argument lnductwely
repeats to arbitrary distances from the boundary; thus, the cycle is trivial,

Note that for a general geometry this result requires that every site be eventually

connected to an edge where sand can be lost. With periodic boundaries no sand would be

lost and thus cycles are expected. |j

Having shown that the relaxation operator exists, I consider the action of adding a

grain of sand followed by relaxation
Definition 9.  On any stable state C the operator a; gives the state a;C' = Ra;C.

Ref. 9 has introduced the concept of “recursive states.” The set R of such states
includes those stable states any one of which can be obtained from any other by some
addition of sand followed by relaxation. As the minimally stable state C* can be obtained
from any other state by adding just enough sand to each site to make z; equal to three, it

1s in R. Thus a convenient definition of the recursive set is

Definition 10. A state C is in the recursive set R if and only if it can be obtained

from the state C* by acting with some product of the operators a;.

It is easily shown that the difference between S and R is not empty. In particular,
a recursive state can never have two adjacent slopes being both zero. A scheme for de-
termining if a state is recursive was given in Ref. 9; I give another method in section IV.
Ref. 9 also shows that the self organized critical ensemble, reached under random addition

of sand to the system, has equal probability for each state in the recursive set.



III An Abelian group

This section is primarily a review of Ref. 9. The crucial results are that the operators
a; on stable states all commute, and that they generate an Abelian group when restricted
to recursive states. These remarkable properties are at the root of all the remaining results

in this paper. I begin with

Theorem 2. The operators a commute; that is:
a;a;C = a;a,CV1,75,C €S. : (3)

Proof. Given 1, 3, and C, there exists a set of topplings i, k=1,...nl,...n such that

n] ' n

a;a;C = (H tlk) a; H t, | a;C o (4)
k=n k=ni41

here the specific numbers of topplings n; and n depend on ¢, j, and C. Acting on general

states, the operators f and « all commute because they merely linearly translate the slopes

z. A general such commutation might force a state outside P, but will remain in G. Thus

we have ‘
a;a;C = (H t;k) ajo;C (3)
k=1

Note that in moving «; to the right, the slopes encountered by the toppling operators t,
all increase. Thus if these intermediate slopes were all positive they remain so.

Now I do a rearrangement of the product of topplings. As t; can reduce the slope only
on site z, there must exist in this product of topplings at least one factor of t; for every
site with z; > 4. I move the rightmost of each of these factors to the right of the product
and thus build up a factor of the updating operator. '

a,-ajC £ (H tlk) UOt,‘Och ‘ (6)

where the product now is only over the remaining toppling factors. Because t; increases
slopes at all sites j # ¢ and site i itself starts with a slope larger than 4, we continue to
have the property that if all intermediate slopes were positive, they remain so after this

rearrangement.



'This procedure can be repeated to remove more factors of U until we have a state in

the stable set. At this point we must have exhausted all factors of t;,. Thus we have
aja;C = Rojo;C = Ra;0;C = aja,C (7)

The construction in this proof also gives an interesting result on the number of topplings

occurring when the sand is added:

Corollary 1.  Given C in the stable set, the numbers of tumblings at any site k occurring

in the operations a;a;C and a;a;C are the same.

Of course, if a site k tumbles, it might be “caused” by either addition; the orders of
the tumblings in the two cases may or may not be altered. '

Note that because the ordering of tumblings is unimportant, repeated addition of sand,
even to only one site, will eventually produce a state which relaxes into the recursive set.
With sufficient sand available, selectively ordered tumblings can spread it over the lattice

to make all slopes supercritical.

[ now restrict myself to the recursive set. In this set we have the remarkable result

that the operator a; has a unique inverse:

Theorem 3. Given @i, then VC € R there exists a unique (a,-_IC) & R such that
ai(a]1C) = C.

This theorem implies that the operators a; when acting on the recursive set form an

abelian group.

Proof. First I find one recursive state such that ¢; on it gives C' and then I will show that
this state is unique. I begin by adding a grain of sand to the minimally stable state C*
and allowing it to relax. This generates a new recursive state a;C*. Now add sand to this

state selectively to regenerate the state C*; that is, construct

P1 = H 03_2i (8)
T
where 2; are the slopes in the state a;C*. By construction I have

Pia;C* = C™*. (9)



Now by assumption C is itself a recursive state. This means there is a product Py of the

a; such that

C = P,C*. (10)

Combining things and using the Abelian nature of the operators, I have
C = PyPa;C* = ;PP C* (11}

Thus P, P C* is a recursive state on which a; gives C.

I must still show that this state is unique. To do this consider repeating the above

process to find a sequence of states C, € R satisfying

Because on our finite system the total number of stable states is finite, this sequence
must eventually enter a loop. To run around this loop in the other direction, mere re-
peatedly operate with a; on the states. But such an operation eventually returns to the
original configuration C, which therefore must lie in the loop. Calling the length of the
loop m, I have af*C = C. I then uniquely define a;'C = a"1C. ||

[ am now ready to count the number of recursive states.

Theorem 4. The number of recursive states equals the absolute value of the determinant

of the toppling matrix A.

Proof. As all recursive states can be obtained by adding sand to C*, we can write any

state C € R in the form
N
¢= (H) ¢ (13
1=]

Here the integers n; represent the amount of sand to be added at the respective sites.
However, in general there are several different ways to reach any given state. In particular,
adding four grains to any one site will force a toppling and is equivalent to adding a single

grain to each of its neighbors. As an operator statement, I have

a= [ @ (14)

JEN(D)



10

where A/(4) denotes the set of nearest neighbors to site I. This is true on any stable state,

but by restricting operations to the recursive set, where inverses exist, I can rewrite this
equation
I1 o} = (15)
i
where F' denotes the identity operator. Eq. (15) is valid for any i. This relation allows
us to change the powers appearing in Eq. (13). If we now label states by the vector of
powers ny, 1 = 1,... N, we see that two such states are equivalent if the difference of these
vectors 1s of the form ZJ- B;Aj; where the coefficients B; are integers. These are the only
constraints; if two states cannot be related by toppling, they are independent. Thus any
vector n; can be translated to lie in an N dimensional hyper-parallelopiped N whose base
edges are the vectors Aj;, j = 1... N extending from the origin. The vertices of this ob ject
have integer coordinates and its volume is the number of integer coordinate boints inside

it. This volume is just the absolute value of the determinant of A. | |

The structure of finite Abelian groups is well understood.!? Many results however,
depend in detail on the prime factors of the order of the group. Here the divisors of
|A| are sensitive functions of the lattice dimensions, about which I know little in general.

Nevertheless, since any element of a group raised to the order of the group gives the

identity, it follows that on the recursive set
alm = FE. (16) ‘

Depending on the detailed lattice dimensions, it may be that a lower power of a; is the
identity, but this power must always be a divisor of |A|. For some explicit examples on
small systems, a 2 x 2 lattice has |A| = 192 but a?* = E forany i. Ona 2 x 7 lattice,
however, all 59,817,135 recursive states can be reached by adding sand to only one corner

site. In all cases, however, Eq. (16) implies that

ol = al®, (17)

Finally note that for large volume this determinant can be easily found by Fourier

transform. In particular, whereas there are 4V stable states, there are only

(mm) g2 v
exp N/( 7log (4 —2¢cos gz — 2cosgy) » = (3.2102...)

~-T,—r) (QTT)
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recursive states.

Eq. (15) also implies that some of the a; can be eliminated in terms of others. In
particular, addition of any sand to any lattice row can be replaced by additions to previous
rows. Iterating this gives the amusing result that any recursive state can be reached from
any other by only adding sand to a single edge of the system. In some cases, such as the

2 by 7 lattice mentioned above, a further reduction is possible, but this depends on the

specific dimensions of the lattice.

IV, An isomorphism

I now pursue the consequences of combining states together.

Definition 11.  Given stable configurations C and C' with the respective slopes z; and

z;. The state C'@ C’ is defined to be the state obtained by relaxing the configuration with

initial slopes z; + z!.

Clearly if either C or C' are recursive states, then C' & €’ is as well. If I now restrict

consideration to recursive states alone, I have

Theorem 5. Under the operation @ the states in R form an abelian group iscmorphic

to the algebra of the a; operating on R.

Proof. Addition of a state C with slopes z; is equivalent to operating with a product of a;

raised to the corresponding slopes. That is, given recursive states B and

BaC o (Haf-') B (18)

The operation @ is associative and abelian because the operators a; are.

Since on recursive states a,—"1 exists, there is an inverse to this addition of state C. For

an explicit expression, consider the analog of Eq. (17)
-C=(Al-1)®C. {19)

Here n ® C means adding n copies of C with &. The state —( has the property that for
any state B

BoCe(-C)=B (20)



12

The state I = C@(~—C) represents the identity and has the property I& B = B, VB ¢
R. This identity is unique.
Finally, the state isomorphic to the operator a; is simply a;I. |

The identity state provides a simple way to determine if a state is in the recursive

state:

Corollary 2. A stablestateC € SisinR ifandonly if Ce I = 1.

Proof. By construction, a recursive state has this property. On the other hand, since I is

recursive, sois I& C |

I now give a simple algorithm for constructing the identity state. In principle one
could take any recursive state, say C*, and repeatedly add it to itself to use |A|® C = I.
However, on any but the smallest lattices, |A| is a very large integer and this procedure

would be computationally inconvenient. A simpler scheme starts by multiplying Eq. (15)

over all sites. As an operator, this gives
 Aij '
11 ajz' = E. (21)
; :

On our rectangular geometry, factors of a; on interior sites will cancel in this product.
The net effect reduces to adding a single grain of sand at each site on straight edges and
two on the corners. Applying this operator to the empty state with all 2z = 0 gives a
state [y, generally outside the recursive set, with the property that when added to any
recursive state C, it relaxes back to C. I now consider doubling this state and allowing
the combination to relax, thus obtaining Iy = Iy @ I;. This similarly does not alter a
recursive state when added to it. This is then repeated, constructing I, = I & [,_;.
In a finite number of steps this procedure converges to Iy = I,_; = I € R. In Figure 11
show an example of the identity state on a lattice of size 288 by 188. Figure 2 shows an
intermediate unstable state in the above construction of this state. Indeed, it 1s a visual

feast to watch this creation of the identity.

V. Topplings
I now turn to some results on the number of topplings arising when two states are

added together. For this purpose I give
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Definition 12.  Let fi(C,C") = f;(C',C) denote the number of tumblings occurring at

site ¢ during the relaxation process in forming C & C".

Now consider adding three stable states Cy, Cs, and Cj;. Because of Corollary 1, the
order of addition does not matter to the total number of tumblings on any site, and we

have the result

fi(CL,C2) + fi(C1 @ C3,C3) = fi (C1,C2 & Cs) + £i (C2,Cs3) (22)

Now consider the tumblings occurring when the identity is added to a recursive state.
Of course the total amount of sand lost in this relaxation must equal what is contained in

the identity, but actually a much stronger result is possible.
Theorem 6.  For any given site i, the number f;(I,C) is independent of C € R.

Proof. Inserting C = I in Eq. (22) and using C & I = C for recursive states gives the
result. [

Let me now consider topplings generated by adding a single grain of sand to a config-

uration;

Definition 13.  Consider a stable state C. Let T};(C) denote the number of topplings

occurring at site ¢ during the relaxation of the state a;C.

As recursive states play such an important role in the analysis of this model, one
might wonder if T;;(C) can be obtained from the addition of recursive states alone. This
is indeed possible if one uses as well the numbers of tumblings coming from adding sand
to the identity state. Consider Eq. (22) with C] containing only a single grain of sand,
C2 = I, and C; being a general recursive state. Using also the résult of Theorem 6, this

gives the desired relation
T (C)=T; (1) + fi(a;1,C) = fi(1,1). (23)

‘Thus for a recursive state we can obtain 7;;{C') from properties of the identity and from
additions of recursive states alone.
I end this section with a rederivation of the result of Ref. 9 for the average of T;;(C)

over the recursive set. This average corresponds to an expectation in the self organized
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critical ensemble. Letting 2;(C) denote the slope at site 7 for configuration C, the definition

of the toppling matrix implies

% (a;C) = 2 (C) = AiTy; (C) + 645 (24)

Solving for T', I obtain

T (C) = (A7), ((C) - = (a;C) + 64;) . (25)
Averaging over recursive states, I have (z(C))cer = (2:(a;C))cer, implying

(T3 (Clcer = (A_I){j : | {(26)

VI. Conclusions

I have discussed some rather remarkable properties of a class of simple cellular automa-
ton models for self organized criticality. In particular, these systems are characterized by
a large Abelian group. Such special properties raise the question of whether the models
may actually be solvable, in the sense that the exponents can be exactly found. On the
other hand, they also raise the question of whether any critical behavior displayed by these
models is generic.

While the average number of tumblings at any site from sand addition at another has
been exactly determined, the fluctuations around this number have not. It is the latter
that should be large in the critical state and are important to its properties. To determine
the fluctuations would involve knowing correlations between the slopes before and after

adding sand to the system. Such correlations may be an interesting topic for further study.
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Figure 1. The identity state on a 288 by 188
lattice. Slcpes from 0 to 3 are color coded
as white, black, red, and green, respectively.
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Figure 2. An intermediate active state in the
generation of the identity state of fig. 1.
Note the hole in the center where sand has not
yet reached. Slopes from O to 7 are color
coded as white, black, red, green, yellow,
blue, magenta, and cyan, respectively.
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