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Glossary

Abelian group – A mathematical group wherein all the elements commute.

Avalanche – A possibly large disturbance induced in a system by a small
perturbation.

Cellular automaton – This refers to the dynamics of a collection of cells
each of which can be in a finite set of states. The evolution is discrete,
with the state of a cell at the next time step being dependent only on
its previous state and that of its neighbors.

Chaos – The tendency of a system of a few degrees of freedom to exhibit
highly erratic behavior characterized by an infinite range of time scales.

Self-organized criticality – The tendency of certain discrete and dissipa-
tive dynamical systems to evolve to a state where changes occur over
all possible length scales.

Definition

Self-organized criticality is a concept invoked to explain the frequent oc-
curence of fractal structures and multi-scale phenomena in nature. In con-
trast with the ideas of chaos, here simple common features appear in sys-
tems with many degrees of freedom. For modeling this phenomenon, cellular
automata provide an elegant class of dynamical systems which are easily
simulated numerically.

1 Introduction

Cellular automata provide a fascinating class of dynamical systems based
on very simple rules of evolution yet capable of displaying highly complex
behavior. These include simplified models for many phenomena seen in na-
ture. Among other things, they provide insight into self-organized criticality,
wherein dissipative systems naturally drive themselves to a critical state with
important phenomena occurring over a wide range of length and time scales.

This article begins with an overview of self-organized criticality. This
is followed by a discussion of a few examples of simple cellular automaton
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systems, some of which may exhibit critical behavior. Finally, some of the
fascinating exact mathematical properties of the Bak-Tang-Wiesenfeld sand-
pile model [1] are discussed.

2 Self-organized Criticality

Self-organized criticality refers to the tendency of many dynamical systems
to naturally drive themselves to a state displaying fluctuations over a wide
range of scales [1]. The concept is envoked as a possible “explanation” of
the omnipresent multi-scale structures throughout the natural world, rang-
ing from the fractal structure of mountains, to the power law spectra of
earthquake sizes [2]. Recent applications include such diverse topics as punc-
tuated evolution [3] and traffic flow [4]. The concept has even been invoked
to explain the unpredictable nature of economic systems; i.e. why you can’t
beat the stock market [5].

Self-organized criticality nicely compliments the concept of chaos. In
the latter, dynamical systems with a few degrees of freedom, say as little as
three, can display highly complex behavior, often generating beautiful fractal
structures. With self-organized criticality, we start instead with systems of
many degrees of freedom, and find a few general common features.

Another attractive feature of both self organized criticality and chaos is
the ease with which computer models can be implemented and the elegance
of the resulting graphics. Most of the figures in this chapter were produced
using my publicly available set of programs “xtoys”[7]. Indeed, much of this
presentation is based on my similar article in Ref. [6]

The paradigm for the phenomenon is the sandpile. On slowly adding
grains of sand to an empty table, a pile will grow until its slope becomes
critical and avalanches start spilling over the sides. If the slope becomes too
large, a large catastrophic avalanche is likely, and the slope will reduce. If
the slope is too small, then the sand will accumulate to make the pile steeper.
Ultimately one should obtain avalanches of all sizes, with the prediction of
the size for the next avalanche being impossible to determine without actually
running the experiment.

The original Bak, Tang, Wiesenfeld paper [1] presented a particularly
simple model to mimic the sandpile idea. For this, each site of a two dimen-
sional lattice has a state represented by a positive integer zi. This integer
can be thought of as representing the amount of sand at that location, or in
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Figure 1: The sandpile model in the final stable state after adding lots of
sand to random places. The lattice is 198 cells by 198 cells. The color code
is grey, red, blue, and green for heights 0,1,2, and 3, respectively. Despite
the lack of obvious patterns, subtle correlations are present; for example no
two adjacent sites have height zero.

another sense it represents the slope of the sandpile at that point. Neither
of these analogies is fully accurate, the model has aspects of each.

The dynamics follows by setting a threshold zT above which any given zi

is unstable. Without loss of generality, I take this threshold to be zT = 3.
Time now proceeds in discrete steps. In one such step each unstable site with
zi ≥ 4 “tumbles” or “topples,” dropping by four and adding one grain to each
of its four nearest neighbors. This may produce other unstable sites, and thus
an avalanche can ensue. This proceeds for further time steps until all sites are
stable. Fig. 1 shows a typical configuration on a 198 by 198 lattice after lots
of random sand addition followed by relaxation. Fig. 2 shows an avalanche
proceeding on this lattice, and Fig. 3 shows the final avalanch region after
the system reaches stability.

A natural experiment consists of adding a grain of sand to a random site
and measuring the number of topplings and the number of time steps for the
resulting avalanche. Repeating this many times to gain statistics, the distri-
bution of avalanche sizes and lengths displays a power law behavior, with all
sizes appearing. In Ref. [8] such experiments showed that the distribution of
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Figure 2: An ongoing avalanche obtained by adding a small amount of sand
to the configuration in Fig. 1. Stable sites which have tumbled during the
avalanche are distinguished by being colored light blue. The still active sites
on the left image are colored yellowish brown.

Figure 3: The final state after the avalanch in Fig. 2 has completed. The
sites which tumbled during the avalanche are distinguished by being colored
light blue. Note that the final avalanche region is simply connected. This is
a general result proven later in the text.
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the number of tumbling events s in an avalanche empirically scales as

P (s) ∼ s−1.07 (1)

and the number of time steps τ for avalanches scales as

P (τ) ∼ τ−1.14 (2)

This model has been extensively studied analytically. While as yet there is
no exact calculation of these exponents, a lot is known. In particular, the
critical ensemble is well characterized. I will return to these points later.

The extent to which laboratory experiments reproduce these phenomena
is somewhat controversial. A study of avalanche dynamics [9] in rice piles
showed power laws with long-grain rice, but more ambiguous results followed
similar experiments with short-grain rice.

3 Cellular Automata

The sandpile model is a simple example of a system of cellular automata
[10, 11]. Each site or “cell” of our lattice follows a prescribed rule evolving
in discrete time steps. At each step, the new value for a cell depends only on
the current state of itself and its neighbors. These systems are fascinating
in that deceptively simple rules can give rise to extremely complex behav-
ior. Furthermore, slight changes in the rules can dramatically change their
behavior.

Even though the formulation of a cellular automaton may seem almost
trivial, there are a huge number of possible rules. For example, suppose I
consider two dimensional models where each cell can take only one of two
possible states. These might be referred to as unset or set bits, or more
figuratively as “dead” or “alive.” Suppose furthermore that I restrict myself
to rules where the evolution of a given cell to the next time step depends
only on the current values of the cell and each of its eight neighbors. In this
case there are 29 = 512 possible arrangements for the cell and its neighbors.
A a general rule needs to specify the next state of the cell for each of these
arrangements. This gives 2512 = 1.3 × 10154 possible rules. Given that the
universe is only of order 4×1017 seconds old, clearly only a vanishing fraction
of these rules have a chance of being studied in any of our lifetimes.

A simple subset of rules called “totalistic” have the state of the updated
cell only depend on the total number of living neighbors. With the eight cell

6



neighborhood, there are nine possible values for this sum, and the new value
for the cell requires specification of the new state for each of these as well
as the current state of the cell. This gives 218 = 262, 144 rules; still large,
but not truly astronomical. If I restrict the rule to depending on the total
of only the four nearest neighbors, I then have a modest 210 = 1024 cases
to consider. Other than the sandpile model, most of the following will be
restricted to such totalistic rules.

With a discrete set of states, cellular automata have the appealing fea-
ture of being easily implementable entirely by logical operations, the natural
functions of computer circuitry. Also, the state of several cells can be stored
and manipulated within a single computer word. Using such tricks, these
models can often be implemented to run extremely fast, leading to hope that
such models may supply simulation methods as good as or better than the
conventional use of floating point fields on a discrete grid. With this moti-
vation, considerable attention has been paid to cellular automata that may
simulate fluid flow. Another advantage of this approach is the ability to work
with arbitrary boundary conditions. These topics go beyond the scope of this
article. A nice review can be found in Ref. [12]

3.1 Conway’s Life

Perhaps the most famous cellular automaton model is Conway’s “Game of
Life” [13]. For this there exists a vast literature; so, I will only mention a
couple of interesting features. The rule involves the eight cell neighborhood,
and if a cell is initially “dead” it becomes alive if and only if it has exactly
three live neighbors, or “parents.” A living cell dies of loneliness if it has
less than two live neighbors, and of overcrowding if it has more than three
live neighbors. Only in the case of exactly two or three live neighbors does
it survive.

While simple to state, this model displays fascinating complexity. There
are simple isolated sets of live cells that quietly survive, such as a block of four
neighboring live cells forming a two by two square. Other configurations oscil-
late, such as three live cells in a row, which alternate between being vertically
and horizontally oriented. A particularly amusing local configuration has
five live cells; say starting with coordinates {(0, 0), (0, 1), (0, 2), (1, 2), (2, 1)}.
After four time steps this configuration returns to its original shape, but dis-
placed by (−1, 1). On an otherwise empty board, this “glider” continues to
propagate as a single entity. In an on-screen simulation, it appears much as
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Figure 4: Some living configurations in life. The top two are stable patterns.
The lower left shows a “blinker” or “traffic light” which oscillates with a
period of two. On the lower right is a glider, which propagates diagonally
through the lattice. Blue denotes a state that is and just was alive, red is
newborn, and green represents just died. The track of the glider is darkened
slightly over the remaining grey background to show its motion.
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Figure 5: On the left is a configuration in life resulting from a random start
and evolved until only stable and period two oscillators remain. On the right
is the state after a small disturbance was introduced in the center and allowed
to die out. Note the irregular shape of the disturbed region, which has been
tinted a darker grey. The lattice here is 198 sites wide by 198 sites high, with
periodic boundaries.

a small insect crawling about. Some elementary configurations are shown in
Fig. 4. A large collection of fascinating life configurations can be found in
the Wikipedia [14].

Gliders allow information to be propagated over long distances, and it
has been proven that with a complicated enough initial configuration, one
can construct a computer out of live cells on a life board [13]. Special sub-
configurations form the analog of electronic gates, which can control beams
of gliders representing bits. Indeed, since life is capable of universal compu-
tation, one might imagine a life board programmed to simulate the game of
life.

There is some limited evidence that the game of life also displays self-
organized criticality [15, 16]. One can repeatedly throw down gliders, which
collide and create a background of static and oscillating clumps. While oscil-
lators of arbitrarily long period are known to exist, those with period longer
than two are extremely rare and almost never created from unorganized ini-
tialization. Once the system has settled into a loop, then another glider can
be tossed on, giving a disturbance. An avalanche is defined to occur dur-
ing the period until the system again goes into an oscillating state. Fig. 5
shows the effect of such a disturbance. In Fig. 6 I show the distribution of
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Figure 6: The distribution of avalanches generated by adding gliders ran-
domly to a system in the game of life consisting of stable and period two
oscillators. An avalanche occupies the period until the system has relaxed
again into such a periodic state. The solid line represents 25,000 avalanches
on a 512 by 512 lattice, and the dashed line is for 6,000 avalanches on a 1024
by 1024 system. This figure is taken from Ref. [16].
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Figure 7: Starting from the initial configuration on the left, the modulo two
rule is evolved for 64 steps using the four nearest neighbors. At a certain
stage, five copies of the original image appear. The blue pixels indicate which
sites were also alive one step before.

such avalanches as measured on modest lattices. There is a hint of a power
law superposed on additional structure from avalanches of only a few time
steps, and a rounding at large times possibly due to finite size effects. The
criticality of life remains controversial; Ref. [17] has looked unsuccessfully for
a power law distribution of activity as one moves in from a source on the
boundary. The relation between these two experiments is unclear.

3.2 Fredkin’s modulo-two rule

An extremely simple but highly amusing rule takes at each time step the
“exclusive or” (XOR) operation between a site and its neighbors. This rule
has the remarkable property of self replication [18]. Starting with any given
initial pattern, after 2n time steps copies of the original state occupy positions
separated by 2n spatial sites from the original in every direction as specified
in the chosen neighborhood. In Fig. 7 I show an example of this with the
four cell neighborhood.

In this rule, the pattern is generally rather complex just before returning
to the replicated case, i.e. after 2n−1 steps. Fig. 8 shows the pattern obtained
from a single set pixel after this rule has been applied for 63 time steps using
the four nearest cells as the neighborhood. Note the fractal structure. In one
more time step, all but five copies of the original set bit die.
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Figure 8: The state after applying 63 steps of the modulo two rule using the
four nearest neighbors to an initial state of a single set bit. After the next
time step this fractal structure decays into only five remaining live cells.

Unlike most cellular automaton rules, this gives a dynamics which in
some sense is not really “complex.” In most cases the simplest way to pre-
dict the evolution of a cellular automaton rule is to actually run it. Here,
however, there is an easier way to predict what the final pattern will look
like; it is always an XOR operation between several displaced copies of the
configuration that appeared 2n time steps in the past. Despite the lack of
complexity, this rule shows rather dramatically that cellular automata are
capable of “reproduction.”

3.3 Reversible rules

Reversibility is rather elusive among cellular automata. In the game of life,
a single isolated cell immediately dies leaving no trace; thus it is impossible
from the state at a given time to reconstruct what was there one time step
back. A related difficult problem is to construct “garden of Eden” configu-
rations which are impossible to arrive at from any previous state [19].

Fredkin pointed out an interesting class of reversible rules based on an
analogy with molecular dynamics [11]. In the later one specifies both the
position and the velocities of a set of particles and evolves the system under
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Newton’s equations with some given inter-particle force law. Reversal can
then be accomplished by merely changing the signs of all the velocities.

In a cellular automaton an analog of velocity requires the value of the
cells at two successive time steps. Based on this, Fredkin presented a very
simple scheme using the previous state to generate a wide class of reversible
rules. He considered taking an arbitrary automaton rule at a given time,
and then added an exclusive or (XOR) operation of the result with the state
one step back in time. These combined operations could then be reversed by
merely interchanging two successive time steps, the analogy of reversing the
velocities.

To see this more mathematically, suppose the state at time i is si, and
the underlying rule begins by taking some arbitrary function f(si). Then
the full rule takes for the next time step si+1 = f(si) XOR si−1. Here the
exclusive or operation is taken site by site over the entire lattice. Elementary
properties of the XOR operation then give si−1 = f(si) XOR si+1, which is
the identical rule for the time reversed dynamics.

These rules provide a wonderful way to play with the concepts of entropy
and reversibility. Indeed, an idealized universe of cellular automata enables
experiments which would be impossible to carry out in the real world. In
Fig. 9 I show the evolution of a simple image under such a rule. The experi-
ment is a crude simulation of a beer glass shattering after being dropped on
the floor. After a few steps it appears quite randomized. Reversal of the mo-
menta of all relevant atoms in the beer glass would allow its reconstruction.
In the model this is easily accomplished by swapping two time steps. After
reversal, continuing with the same rule reconstructs the original image. At
all stages the “information” contained in the system must be constant, even
though the image may appear of drastically different complexity.

The reconstruction process is highly sensitive to the reversal being pre-
cise. The analog here is to the sensitivity to initial conditions in dynamical
systems. In Fig. 9c I try to reproduce the beer cup from its shards as in the
above experiment, except that now at the time of reversal I modify the state
of exactly one pixel. The reversal process recovers the original image only in
regions outside the “light cone” for the modified pixel. As the disturbance
can only propagate to neighbors in one time step, pixels outside n steps can
not know of the change before an equal number of time steps. This use of an
XOR operation to generate reversible complex mappings is an integral part
of the Data Encryption Standard; see, for example, Ref. [20].
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Figure 9: The encryption of a glass of beer. The original rule uses the eight
cell neighborhood with births on 1,3,5, and 7 neighbors and survivors on
exactly 1 neighbors. The rule is modified at each step by XOR’ing the result
with the history one time step back. Swapping two adjacent time steps will
bring the glass back exactly. The first figure is the starting configuration,
the second after 50 steps of evolution. At this point one bit in the upper left
hand quadrant is flipped, and the dynamics is reversed. The glass is restored
in all places beyond 50 steps from the flipped bit. Note the effect of a “speed
of light” in the problem.
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Figure 10: On the left is a snapshot of the forest fire model on a 450 by 200
periodic lattice. Trees are continuously burning at a slow rate, while fires
burn them down and spread to nearest neighbor trees. Here the four cell
neighborhood is used.

3.4 Forest fires

An amusing model of forest fires has three possible states per cell, empty,
a tree, or a fire. For the updating step, any empty site can have a tree
born with a small probability. At the same time, any existing fire spreads to
neighboring trees leaving its own cell empty. The rule here differs from those
discussed previously in having a stochastic nature. As the system is made
larger, the growth rate for the trees should decrease to just enough to keep
the fires going.

If too many trees grow, one obtains a large fire reducing their density,
while if there are too few trees, fires die out. On a finite system, one should
light a fire somewhere to get the system started. On the other hand, as the
system becomes larger, the growth rate for the trees can be reduced without
the fire expiring. In a steady state the system has fire fronts continually
passing through the system, as illustrated in Fig. 10a.. Perhaps there is a
moral here that one should be careful about extinguishing all fires in the real
world, for this may enhance the possibility for a catastrophic uncontrollable
fire. It is not entirely clear whether this model is actually critical. What
seems to happen on large systems is that stable spiral structures form and
set up a steady rotation. For a review of this and several related models, see
Ref. [21].

15



4 The sandpile revisited

Very little is known analytically about general cellular automata. However, in
a series of papers, Deepak Dhar and co-workers have shown that the sandpile
model has some rather remarkable mathematical properties [22, 23, 24, 25].
In particular, the critical ensemble of the system has been well characterized
in terms of an Abelian group. In the following I will generally follow the
discussions given in Refs. [26, 2].

Dhar introduced the useful toppling matrix ∆i,j with integer elements
representing the change in the height, z at site i resulting from a toppling at
site j [22]. More precisely, under a toppling at site j, the height at any site i

becomes zi − ∆i,j. For the simple two dimensional sand model the toppling
matrix is thus

∆i,j = 4 i = j

∆i,j = −1 i, j nearest neighbors
∆i,j = 0 otherwise.

(3)

For this discussion there is little special to the specific lattice geometry;
indeed, the following results easily generalize to other lattices and dimensions.
The analysis requires only that under a toppling of a single site i, that site has
its slope decreased (∆i,i > 0), the slope at any other site is either increased
or unchanged (∆i,j ≤ 0, j 6= i), the total amount of sand in the system
does not increase (

∑

j ∆i,j ≥ 0), and, finally, that each site be connected
through toppling events to some location where sand can be lost, such as at
a boundary.

For the specific case in Eq. 3, the sum of slopes over all sites is conserved
whenever a site away from the lattice edge undergoes a toppling. Only at the
lattice boundaries can sand be lost. Thus the details of this model depend
crucially on the boundaries, which we take to be open. A toppling at an edge
loses one grain of sand and at a corner loses two.

The actual value of the maximum stable height zT is unimportant to the
dynamics. This can be changed by simply adding constants to all the zi.
Thus, as in section 2, I consider zT = 3. With this convention, if all zi are
initially non-negative they will remain so, and I thus restrict myself to states
C belonging to that set. The states where all zi are non-negative and less
than 4 are called stable; a state that has any zi larger than or equal to 4 is
called unstable. One conceptually useful configuration is the minimally stable
state C∗ which has all the heights at the critical value zT . By construction,
any addition of sand to C∗ will give an unstable state leading to a large
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avalanche.
I now formally define various operators acting on the states C. First,

the “sand addition” operator αi acting on any C yields the state αiC where
zi = zi + 1 and all other z are unchanged. Next, the toppling operator ti
transforms C into the state with heights z′j where z′j = zj−∆i,j . The operator
U which updates the lattice one time step is now simply the product of ti
over all sites where the slope is unstable,

UC =
∏

i

t
pi

i C (4)

where pi = 1 if zi ≥ 4; 0 otherwise. Using U repeatedly gives the relaxation
operator R. Applied to any state C this corresponds to repeating U until no
more zi change. Neither U nor R have any effect on stable states. Finally, I
define the avalanche operators ai describing the action of adding a grain of
sand followed by relaxation

aiC = RαiC. (5)

At this point it is not entirely clear that the operator R exists; in par-
ticular, it might be that the updating procedure enters a non-trivial cycle
consisting of a never ending avalanche. I now prove that this is impossible.
First note that a toppling in the interior of the lattice does not change the
total amount of sand. A toppling on the boundary, however, decreases this
sum due to sand falling off the edge. Thus, during an avalanche the total
sand in the system is a non-increasing quantity. No closed cycle can have
toppling at the boundary since this will decrease the sum. Next, the sand
on the boundary will monotonically increase if there is any toppling one site
further in. This also can not happen in a cycle; thus, there can be no top-
plings one site away from the edges. By induction there can be no toppling
arbitrary distances in from the boundary; thus, there can be no cycle, and
the relaxation operator exists. Note that for a general geometry this argu-
ment requires that every site be eventually connected to an edge where sand
can be lost.

With a system lacking edges, such as under periodic boundaries, no sand
would be lost and thus cycles are expected and easily observed. These mod-
els might be called “Escher models” after the artist constructing drawings of
water flowing perpetually downhill and yet circulating in the system. While
little is known about the dynamics of this variation on the sandpile model,
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some studies have been done under the nomenclature of “chip-firing games”
[27]. It has been argued [28] that this lossless sandpile model on an appro-
priate lattice is capable of universal computation.

I now introduce the concept of recursive states. This set, denoted R,
includes those stable states which can be reached from any stable state by
some addition of sand followed by relaxation. This set is not empty because
it contains at least the minimally stable state C∗. Indeed, that state can be
obtained from any other by carefully adding just enough sand to each site to
make each zi equal to three. Thus, one might alternatively define R as the
set of states which can be obtained from C∗ by acting with some product of
the operators ai.

It is easily shown that there exist non-recursive, transient states; for in-
stance, no recursive state can have two adjacent heights both being zero.
If you try to tumble one site to zero height, then it drops a grain of sand
on its neighbors. If you then tumble a neighbor to zero, it dumps a grain
back on the original site. One can also show that the self-organized critical
ensemble, reached under random addition of sand to the system, has equal
probability for each state in the recursive set. This is a consequence of the
Abelian nature of this system, as discussed below.

The crucial results of Refs. [22, 23, 24, 25] are that the operators ai

acting on stable states commute, and they generate an Abelian group when
restricted to recursive states. I begin by showing that the operators commute,
that is aiajC = ajaiC for all C. First I express the a’s in terms of toppling
and adding operators

aiajC =

(

n1
∏

k=1

tlk

)

αi





n
∏

k=n1+1

tlk



αjC (6)

where the specific number of topplings n1 and n depend on i, j, and C.
Acting on general states, the operators t and α all commute because they
merely linearly add or subtract heights. Therefore I can shift αi to the right
in this expression:

aiajC =

(

n
∏

k=1

tlk

)

αiαjC (7)

Now I rearrange the product of topplings. In the non-trivial case that the
α-operators render either i or j (or both) unstable, the product must con-
tain toppling operators corresponding to those unstable sites. I shift those
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operators to the right. Those operators constitute by definition the update
operator, U, so I can write

aiajC =
(

∏

tlk

)

UαiαjC (8)

where the factors within the bracket are the remaining t’s. Now, the update
operator may leave some sites still unstable, and then the product must
include further toppling operators; working on those sites, I can pull out
another factor of the update operator. This procedure can be repeated until
I have used all the toppling factors and the state is stable. Thus, I can identify
the operator within the brackets in Eq. (8) as the relaxation operator R. But
αiαjC is the same state as αjαiC, so aiajC = ajaiC.

A trivial consequence of this argument is that the total number of tum-
bling events occurring in the operations aiajC and ajaiC are the same. Of
course, if a particular site k tumbles it can be caused by either addition; the
orders of the tumbling events may or may not be altered.

An intuitive argument that sand addition may be commutative uses an
analogy with combining many digit numbers under long addition. The tum-
bling operation is much like carrying, except rather than transfering to the
next digit, the overflow spreads to several neighbors. As addition is known
to be Abelian, despite the confusing elementary-school rules, I might expect
the sandpile addition rule also to be.

I now prove that the avalanche operators have unique inverses when re-
stricted to recursive states; that is, there exists a unique operator a−1

i such
that ai(a

−1
i C) = C for all C in R. This implies that the operators ai acting

on the recursive set generate an Abelian group. For any recursive state C I
first find another recursive state such that ai acting on it gives C, and I then
show that this construction is unique.

I begin by adding a grain of sand at site i to the state C and then relax
the system. This generates a new recursive state aiC. Now since the state
C is by assumption recursive, there is some way to add sand to regenerate
C from any given state. In particular, there is some product P of addition
operators aj such that

C = PaiC (9)

But the a’s commute, so I have

C = aiPC (10)

and thus PC is a recursive state on which ai gives C.
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I must now show that this state is unique. Consider repeating the above
process to find a series of states Cn satisfying

(ai)
nCn = C. (11)

Because on a finite system the total number of stable states is finite, the
sequence of states Cn must eventually enter a loop. I can run backwards
around this loop by adding back the sand repeatedly to the given site. As
the original state C appears in resupplying the sand, C itself must itself
belong to the loop. Calling the length of the loop m, I have (ai)

mC = C. I
now uniquely define a−1

i C = am−1
i C.

I now have sufficient machinery to count the number of recursive states.
As all such can be obtained by adding sand to C∗ , I can write any state
C ∈ R in the form

C =

(

∏

i

ani

i

)

C∗. (12)

Here the integers ni represent the amount of sand to be added at the re-
spective sites. However, in general there are several different ways to reach
any given state. In particular, adding four grains of sand to any one site
must force a toppling and is equivalent to adding a single grain to each of its
neighbors. This can be expressed as the operator statement

a4
i =

∏

j∈nn

aj (13)

where the product is over the nearest neighbors to site i. I can rewrite this
equation by multiplying by the product of inverse avalanche operators on the
nearest neighbors on both sides, thus obtaining for any site i

∏

j

a
∆ij

j = E (14)

where E is the identity operator. This allows me to shift the powers appearing
in Eq. (12). Define N to be the number of sites in the system. If I label states
by the vector n = (n1, n2, n3, . . . nN) I see that two states are equivalent if the
difference of these vectors is of the form

∑

j βj∆ij where the coefficients βj

are integers. These are the only constraints; if two states can not be related
by toppling they are independent. Thus any vector n can be translated
repeatedly until it lies in an N -dimensional hyper-parallelepiped whose base
edges are the vectors ∆ji, j = 1, . . . N. The vertices of this object have integer
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coordinates and its volume is the number of integer coordinate points inside
it. This volume is just the absolute value of the determinant of ∆ . Thus
the number of recursive states equals the absolute value of the determinant
of the toppling matrix ∆.

For large lattices this determinant can be found easily by Fourier trans-
form. In particular, whereas there are 4N stable states, there are only

exp

(

N

∫ (π,π)

(−π,−π)

d2q

(2π)2
ln(4 − 2qx − 2qy)

)

≃ (3.2102..)N (15)

recursive states. Thus starting from an arbitrary state and adding sand, the
system “self-organizes” into an exponentially small subset of states forming
the attractor of the dynamics.

4.1 An isomorphism

Following Ref. [26], I now look into the consequences of stacking sand piles on
top of one another. Given stable configurations C and C ′ with configurations
zi and z′i, I define the state C ⊕ C ′ to be that obtained by relaxing the
configuration with heights zi + z′i. Clearly, if either C or C ′ is a recursive
state, so is C ⊕ C ′.

Under the operation ⊕ the recursive states form an Abelian group iso-
morphic to the algebra generated by the ai. First, the addition of a state C

with heights zi is equivalent to operating with a product of ai raised to zi,
that is

B ⊕ C =
(

∏

azi

i

)

B. (16)

for any recursive state B. The operation ⊕ is associative and Abelian because
the operators ai are.

Since any element of a discrete group raised to the order of the group
gives the identity, it follows that a

|∆|
i = E. This implies the simple formula

a−1
i = a

|∆|−1
i . The analog of this for the states is the existence of an inverse

state, -C
−C = (|∆| − 1) ⊗ C. (17)

Here, n ⊗C means adding n copies of C and relaxing. The state -C has the
property that for any state B ⊕ C ⊕ (−C) = B.

The state I = C ⊕ (−C) represents the identity and has the property
I ⊕B = B for every recursive state B. The state which is isomorphic to the
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Figure 11: The identity state for the sandpile model on a 302 by 250 lat-
tice. The color code is grey, red, blue, and green for heights 0,1,2, and 3,
respectively.

operator ai is simply aiI. The identity state provides a simple way to check
if a state, obtained for instance by a computer simulation, has reached the
attractor, i.e. if a given state is a recursive state: A stable state is in R if
and only if C ⊕ I = C. The proof is simple. By construction, a recursive
state has this property. On the other hand, since I is recursive, so is C ⊕ I.

The identity state can be constructed by taking any recursive state, say
C∗ and repeatedly adding it to itself to use |∆| ⊗ C = I. However, on any
but the smallest lattices, |∆| is a very large integer. A more economical
scheme is to start with an empty table but use sandy boundary conditions
which continually pour sand onto the table. Once it reaches a steady state,
switch to open boundary conditions and let the sand run back off. This then
relaxes to the desired identity. Fig. 11 shows the identity state on a 302 by
250 lattice. Note the fractal structure, with features on many length scales.

Majumdar and Dhar [25] have constructed a simple “burning” algorithm
to determine if a state belongs to the recursive set. For a given configuration,
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Figure 12: The burning algorithm being applied to the state in Fig. 1. Burnt
sites are cyan, burning sites are orange, and the remaining sites are colored
as previously. This avalanche eventually tumbles every site exactly once.

first add one particle to each of the edge sites and two particles to the corners.
This again corresponds to imagining a large source of sand just outside the
boundaries, which then tumbles one step onto the system. Then return to
open boundaries and update according to the usual rules. If and only if
the original state is recursive, this will generate an avalanche under which
each site of the system tumbles exactly once. Also, the final state after
the avalanche will be identical to the original. However, if the state is not
recursive, some untumbled sites will remain. Fig. 12 shows such a process
underway on the configuration of Fig. 1. Here sites which have already
burned are shown in cyan, while the remaining sites in the center have not
yet tumbled. The small number of sites shown in orange are the still active
sites, which eventually burn the entire remaining lattice.

The burning algorithm provides a simple way to prove that the avalanche
regions are simply connected once one is in the critical state. In a burning
process, any sub-lattice of the original will have all of its sites tumbled onto
from outside. This is the condition for starting a burning on the sub-lattice.
Thus, if a configuration is in the critical ensemble for the whole lattice, then
any extracted piece of this configuration on a subset of the original lattice
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is also in the critical ensemble of the extracted part. Now suppose that
one constructs an avalanche with any initial addition to a state from the
critical ensemble. In any subregion enclosed by this avalanche, sand will fall
from the tumbling sites on its outside. Since the sub-lattice is itself in its
own critical ensemble, this must induce an avalanche which, by the burning
algorithm, will tumble all enclosed sites. Thus any avalanche on a state from
the critical ensemble cannot leave untumbled any sites in a region isolated
from the boundary, i.e. an untumbled island. This result that avalanches
must be simply connected does not follow for states outside the recursive set,
as can be easily demonstrated by considering a sandpile with a hole of empty
sites in the middle.

The burning algorithm has several amusing consequences. One is that
any configuration with only height 2 or 3 present is in the critical ensemble
as long as the lattice has corners. For example, with all height 2, the burning
will start at the four corners of a rectangular lattice and steadily work its
way to the center of the system. Another consequence is that in addition to
the tumbling region from an avalanche being simply connected, so will the
smaller region where the number of tumblings exceed any fixed number; i.e.
the region of sites that tumble twice or more is also simply connected.

5 Future directions

Simple models as implemented by cellular automata provide a rich area for
the study of complex phenomena. Some systems can self organize with
physics at many scales, while others provide fascinating demonstrations of
thermodynamic laws. I have only touched on a few issues here, leaving out
many related topics such as lattice gasses, driven interfaces in random media,
growth processes, and evolution. As the ease of programming and the speed
of modern computers continue to rush forward, so will the fascination with
such models.
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