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ABSTRACT

I review the motivation for formulating gauge theories on a
lattice to study non-perturbative phenomena. I discuss recent progress
supporting the compatibility of asymptotic freedom and quark confinement

in the ‘standard SU(3) Yang-Mills theory of the strong interaction.
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Lattice gauge theories currently provide one of the most promising
approaches towards a demonstration of gquark confinement through their
interactions with non-Abelian gauge fields. I will first discuss the
motivations for the lattice method of defining a gauge theor&. Then I
will turn.to the recent developments which strongly support the coekistence
of confinement and asymptotic freedom in the continuum limit of the
standard SU(3) gauge model of the strong interaction.

In four-dimensional space time, confinement must be a non-perturbative

phenomenon. Suppose quarks are confined by a linear potential
E{r) =Kr {1)

where E(r) is the interaction emergy of a quark-antiquark pair separated by
distance r and K is a constant referred to as the "string tension" by
anazlogy with the string model. As K-'is a physical quantity, it must obey
the renormalization group equation. This implies the dimensional trans—

mutatioél%orm at weak coupling

K&%exp ———-—2]"—(-—; . (2)
a Sogo a

when g is the bare coupling constant defined when an ultraviolet cutoff
of length a is introduced. Here 80 is the first term in a perturbative

expansion of the Gell-Mann Low function(z)

3
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25— 8y = 8000 + Blgo + O(go ) (3
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The important comsequence of Eg. (2) is the essential singularity at &g =0

which precludes any perturbative calculation of K.



Any true non-perturbative analysis of a Yang-Mills theory requires
a2 means of controlling ultraviolet diverzences in a manner independent of
Feynman diagrams. This precludes most conventional regularization schemes.
Herein lies the main virtue of a lattice formulation. As wa§elengths less
than twice the lattice spacing, a, have no mearnirg, the discretized theory
has a cuteff of each momentum component at T/a.

- As with any cutoff prescription, considerable freedom remains in a
lattice formulation. Upon removal of the cutoff, the physics of a
renormalizable field theory should be independent of the details of the
regulator. However, with the cutoff in place, ome is free to add to the
Lagrangian terms which will not contribute in the continuum limit. Using
this freedom, Wilson has presented z particularly elegant lattice formulation

(3)

for gauge theories. His prescription keeps local gauge invariance as
an exact sﬁmmetry in a mathematically well-defined systemn,

ﬁilson uses the concept that a gauge field represents a theory of non-
integrable phase factors.(4) When a material particle transverses a world
line C in space time its interaction with a gauge field appears as a phase
factor in its wave function

Y >exp(ie [ 8,dx ) (4}

C

The dynamics of the material particle follow from a path integral over all
possible world lines. For a non-Abelian theory these phase factors became
matricesg in thé gauge group. These group elements define the basic degrees
of freedom in the lattice thecry. Approximating a world line for the

particle by a sequence of steps between neighboring sites in a hypercubical



lattice, Wilson replaces the above phase factor with the product of
phases associated with each step in this path. This leads to using as
variables an element Uij of the gauge grOuﬁ associated with every nearest
neighbor pair of sites {i,j} din the lattice. TFor the stroﬁg interaction
'model, these elements are of the group SU(3).

Using these variables, %e ﬁeed aﬁ expression for the action which

reduces in the continuum limit to the ordinary gauge theory action

S (U— [d*x % F T | (&)

‘a-f L
Wilson proposed the simple form

SU) = ¢ (1 - % Re(Tr{ = T ) (5)
= {i,jleq ™

Here the sum is over all elementary squares or "plaquettes” of the lattice,
and the product is an ordered group product of the group elements surrounding
the giﬁén square. The normalization factor N is chosen for counvenience to be
the dimension of the group matrices, i.e. 3 for SU(3). A path integral defines
the quantum theory

z= [ x au,, e B8 (6)

s oxq ij
{lsjf

where B is proportional to the inverse bare coupling constant
B = —= for SU(N) ()
From Eq. (6) is is apparent that the path integral is equivalent to

a partition function for the statistical mechanics of a four-dimensional

system of spins belonging to the gauge group. Their interaction is through



the four spin coupling in Eq. (5). TFor 8 < <1, Wilson has derived a stroug
ceupling series by expanding the exponent in Eq. (6). 1In this ""high
temperature" limit confinement is automatic in the sense t
reduces to a theory of quarks connected by strings with a finite energy per
unit length. On the 6ther band, at weak caupling g8 > >i a spin §ave expansion
reproduces conventional Feynman perturbation theory, This series is known
to be at best asymptotic, but its existence suggests a possible low temperature
phase of free quarks and massless gluons. As this is qualitatively different
from the strong coupling regime, one expects at least one phase transition
separating these domains if the free quark phase exists at all, Balian,
Drouffe, and Itzykson have presented arguments that in enocugh space-tima
dimensions such a transition will occur.(s)

Ultimately we are interested in the continuum limit of the theory,
This requires taking the bare coupling constant to a critical value so that
correlation scales, i.e. inverse physical masses, become large relative to the
cutoff represented by the lattice spacing. The perturbative renormalization
group indicates one such critical point at vanishing bare coupling.(s) A
continuum limit at this point yields the phenomencn of asymptotic freedom;
the effective renormalized coupling will go to zero when defined on decreasing
length scales. The virtue of this phenomenon is the perturbative prediction
of scaling phenomena in high momentum transfer processes.

To have asymptotic freedon ipn the same phase that Wilson's expansion
exhibits confinement, four dimensional space~time should be inadequate to
SUpport a transitiom to a free massless spin-wave phase at any fin;te coupling,

. 7
Based on the approximate recursion relation analysis of Migdal and Kadanoff( },
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current lore is that four space time dimensions represent a critical case
for gauge theories. Im more than four dimensions all gauge groups should
exhibit a spin-wave phase whereas in less than four dimensions all continuous
gauge groups exhibit only strong coupling behavior. In exactly four dimen-
sions only abelian continuous groups should #xhibit a noh-trivial phase
structure; indeed, this is necessary if Wilson's formalism is to describe
guantum electrodynamics, the prototype of all gauge theories,

Recently from two rather different techniques, strong evidence has
appeared that this "standard" picture of the phase structure of lattice
gauge theories is indeed correct. The first technique involves use of
Pade techniques to extrapolate from the stroug coupling expansion into a
regime where weak coupling predictions become valid(a)’(g) Assuming the
linear interquark potential survives the continuum limit, we can use the
string tension K to define a renormalization prescription. The bare coupling
constant dependence on cutoff follows by holding this tension fixed by |
adjusting 8 as the lattice spacing is reduced, One then tests this
assumption in the weak coupling limit by comparing with the asymptotic

freedom prediction

a2K ->—-K—(B crz) exp (-—1—2‘) ' (8)

This is Eq. (2) written to take account of the second coafficient of the

(10)

Gell-Mann Low function. The parameter AO is a scale relating the weak

coupling behavior at short distances to the strong linear potential at long

(8)

/ +
distances. Kogut, Pearson, and Shigemitsu have used a Pade extrapolation of



the strong coupling expansion for the left hand side of Eq. (8) and found
it matches smoothly onto the asymptotic freedom prediction. Using a
Hamiltonian variation of Wilson's path integral formulation, Kogut and

Shigemitsu find for SU(B)(Q)

1 ' . ‘
Ay = 505 i d (9)

The other technique giving recent results on the lattice theory is
Monte Carlo simulation. My own recent research has centered here.(ll) Con-
sidering the path integral of Eq. (6) as a partition function for a statistical
system at inverse temperature » the Monte Carlo procedure generates a few
configurations which are typical of that system in thermal equilibrium. Thié
is done by making "random" changes of the various group elements in such a
manner that asymptotically the probability of any configuration C is proportional

to the Boltzmann factor

P(C) ~ e BS(O) (10)

A simple intuitive algorithm which I have used for SU(2) is to pass through the
lattice and successively replace each group element U with a new one U chosen

randomly from the group with weighting

4P(U') = due B8S(UM) (11)

where the action is calculated with the neighboring variables at their current
values. This technique is equivalent to touching a heat bath at inverse tempera-
ture B to the links in question. TFor SU(3), due to the complexity of the group,
I am using a less intuitive but computationally simpler algorithm similar te

that used by Wilson.(lz)In the following, one iteration means one Monte Carlo

operation on every link of the lattice.



As the entire lattice is stored in the computer memory, once it is
in equilibrium one can measure any desired correlation functiorn., In a

(3

gauge thecry the natural correlation functions are Wilsom loops. Given
a closad contour C of links in the lattice, the associated Wilson loop is
the expectation of the-product of the link variables
W) = <3 T=( 0 U (12)
2 ij
ijeC
when the U's are ordered sequentially around the contour. If confinement
occurs with a linear potential, then W(C) should fall exponentially with the

area enclosed by the contour C when the loop becomes large. The coefficient

of this falloff is given by the string temsion

W(C) v exp(-a’k N_(0)) (13)

where ND(C) is the minimum number of elementary squares covering a surface
enclosed by C. In my Monte Carlo treatment, I attempt to measure the Wilson
loops and extract this area law behavior at various couplings for comparison
with the asymptotic freedom prediction in Eq. (8).

In Figure (1) I illustrate the typical convergence of the Monte Carlo
procedure for SU(2) gauge theory. Working at 8 = 2.3, I plot the average

plaquette or internal energy

P =(1 - % Tr{ T Uij)> (1.4)

ije
as a function of the number of iterations for a total of thirty iteratioms.
Both ordered (Uij=l) and disordered (Uij random) initial conditions are shown

& 4 R
with lattices of from 4 to 10 sites. Note that the convergence rate is



essentially independent of lattice size; only the fluctuations grow on the
smaller lattices. This supports the absence of a phase transition in this
Tegion. This value of R represents the region of slowest convergence for the
Monte Carlo procedure for SU(2).

In Fig. (2) I show the evolution from an ordered state on an 84 lattice
for several values of 8. Note that the convergence rate is not strongly B
dependent; a slight decrease occurs -in the range 8 = 2,0-2.4, At all B
equilibrium is eéssentially complete after 20 iterations, Convergence is
extremely rapid both at high and low temperatures; consequently, the method
is not tied to either strong or weak coupling,

In contrast to the non-Abelian case, Fig, (3) shows the evolution from
random and ordered initial states of 2 U(l) gauge theory on a 64 lattice,

The value of 8 is chosen to lie at our Moute Carlo estimate of a critical
poeint. Note that convergence is both slower and accompanied by substantial
fluctuations. This represents the transition rendering the strong coupling
expansion inapplicable to quantum electrodynamics.

Fig. (4) shows the results of thermal cycling several of the models, By
slowly increasing the temperature from very cold to very hot and then
reducing it again, a reglon of slow convergence appears as a hysteresis effect.
In the figures we show results on SU(2) gauge theory in four and five dimen-
sions as well as the four dimensional U(1) theory. T show SU(2) in five
dimensions in order to illustrate that confinement is indeed lost as expected
if four dimensions is critical. The transitions in both the four dimensional
U(1l) and five dimensional SU(2) theories are clear whereas the four dimensional

SU{2) model appears much smoother, In order to provide more support for the



lack of a transition in the latter model, I now turn to a study of
Wilsen loops.

In Fig. (5) I show the expectation values of square Wilson loops at
g = 3 as a function of lattice size. Thease loops lie in a fundamental lattice
plane. Each measurement is an average over all similar loops in the lattice
and the error bars represent the root mean square fluctuation over five
iterations after attaining equilibrium. As intuitively expected, larger
loops show the finite lattice effects most strongly.

To extract an area law, I have constructed the quantities

- W(I,J) w(I-1,J-1)
X(L,3) = -m (W(I,J-l) W(I-1,J) ) (15

The motivation for this construction is that overall constants and perimeter
behavior in the loops will cancel out., Whenever the lecops are dominated by the

area law, i.e. I, J 5 >1 or at strong coupling,
L 2
X(L,0) - a“x (18)

However, at short distances and weak coupling, X should have a perturbative
expansion radically differeat from the essential singularity expected for
azK. We are thus led to the conclusion that the value of a2K as a function
of coupling is given by the envelope of curves of X(1,I) for.all I and J,

In Fig. (6) I show the values of X(I,I) for I = 1 to & plotted versus
1/gé for the gauge group SU(2) on a lO4 lattice. The error bars are the
standard deviation of the mean taken from an ensemble of five configurations.
At stronger couplings the larger loops have large relative errors but are

all consistent with X approaching the values from smaller loops., Om the

graph I plot the strong coupling limit
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X(1,3) = n(gh) + o(%;) (a7

as well as the weak coupling behavior for aZK from Eq. (8) with the parameter

Ay = (1.3£.2) x 1072k (18}

The error is a subjective estimate.
Fig. (7) is the same as Fig. (6) except here the gauge group is SU(3).
Most of the points are from a 44 lattice and hence only X(1,1) and X(2,2) are

2

plotted. At ga = 1.11 and 1.80 runs on a 64 lattice gave X(3,3) as well. The

strong coupling behavior is now
I

X(T,3) = n(3gd) + o(—-—%) (19
50

The plotted weak coupling behavior for a2K corresponds to
-3
Ag = (5.0£1.5) x 10 ~K (20)

Note the remarkable agreement with the series result in Eq. (9). This may

be somewhat fortuitous as the Hamiltonian and Lagrangian formulations need not
give the same Ao.

At first sight the small numbers in Eqs. (18) and (20) are rather

surprising, coming as they do from a theory with no small dimensionless para-
meter. However, the value of a renormalization scale is in general dependent

on renormalization scheme. Since A is defined in a weak coupling limit,
perturbative calculations to one loop order can relate different definitions.(lB)

(14)

Hasenfratz and Hasenfratz have recently done a lengthy analysis relating
the lattice AO to a more conventional AMOM defined by the three point vertex

in Feynman gauge at a given scale in momentum space. Their results are
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s
|

= 57.5 AO SU(2) (21)

.__
=
1

83.5 Aq SU(3) ' (22)

Combining the Monte Carlo results with these numbers gives

MM o (75:12)K - suq2)y (@3

A a2e13)vR SU(3) (24)

If we accept the string model<15) connection between X and the Regge sloPe.a'
X = 1

27" (25)

and use g 1.0 (GeV)_z, then we conclude for SU(3)

MOM

N 170450 MeV. (26)

i

Some caution is necessary in the phenomenological interpretation of Eq, (26)
because virtual quark loops have not been included in the calculation,

In conclusion, recent advances in lattice gauge theory have given
evidence for the onset of asymptotic freedom using a renormalization prescription
based on confinement with a linearly rising long distance potemtial., In this
way, ties are strengthened between the lattice formulation and more conventional
perturbative approaches to gauge theory. The caleulation of the parameter AO
in terms of the string tension relates the behavior of the theory in long and
short distance regimes.

This research was suppbrted under contract DE-AC02-76CHCO0L6 with the

U. 5. Department of Enexgy.
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Figure Captions

The average plaquette as a function of number of iterations at

B = 2.3 and with the gauge group S5U{2).
The evolution of the average plaquette at several temperatures.

The evolution of the average plaquette for the U(l) gauge group at

g=1.0.

Thermal cycles on (a) the five dimemsional SU(2) theory, (b) the
four dimensional SU(2) theory, and (c) the four dimensiomal U(1)

(isomorphic to S0(2)) theory.
Wilson loops at B8 = 3 as a function of lattice size.

The quantities X(I,I) for SU(2) gauge theory as a function of

inverse coupling squared,

The gquantities X(I,I) for SU(3) gauge theory.



AVERAGE PLAQUETTE

0.6

0.2

) 6% LATTICE
X %

A L 2 T LT LR PPN

y 8% LATTICE
X x x

X % .
++++++f¥¥¥¥é¥&¥xxx¥¥x5xxxxxx

x 104 LATTICE

x
+++++§§¥5¥¥¥¥¥¥¥¥¥¥¥¥¥mxx¥¥

l I f

L

\\[

Y

vl

10 20 30
ITERATIONS

Fig. 1



05

b

i

Su(z;

5 DIMENSIONS
x HEATING

© COOLING

Su(2)

4 DIMENSIONS
x HEATING
© COCLING

SO (2)

4 DIMENSIONS
X HEATING
o COOLING

0.5

Fig. 4




1.0

0.1

WILSON LOOP

0.0

T T

[

HSXG

L]

I

HEERE

i ]
44 64 g4
LATTICE SIZE

Fig. 5

104



1.0

X (I,1)

O.1

0.0l

. sU (2) ~
in(gx) ]
0

‘ Ag=(1.3%.2)xI072/K |
— % g

I=|

x

I=2

x
N o .
— § -
- | 13-
- I=4 -

] 1 I
0.25 0.5 0.75
I/g2

Fig.

0



X(I,I)

0.01

- ] ! i ] ]
- SU (3) -
n(3gZ)
A ‘(, S0 -
Ap=(5.0% 1.5} x1073 /K
| o T=1] ]
X
- % =2 =
- X ]
L I:3 ]
[
] | ] i
0.5 1.0 1.5 2.0
2
i/go

Fig. 7

2/



	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22

