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ABSTRACT

Recent progress in understanding strong interaction physics
through Monte Carlo simulation of lattice gauge theory is reviewed.

Because of the analogy between the Feynman path integral and a
partition function, Monte Carlo simulation of statistical systems has
recently become a powerful tool of the elementary particle theorist.
This numerical method for the evaluation of path integrals is gener-
ally studied with a space time lattice providing am ultraviolet cut~
off. The technique converges well in both strong.and weak coupling
regimes and interpolates nicely in between. TFurthermore, as entire
field configurations are stored in the computer memory, any desired
correlation function is in principle awvailable.

0f course any technique has its limitations. Statistical errors
in any Monte Carlo study drop only with the square root of the comput-
er time and extraction of some numbers, such as the glueball mass,
has turned out to be highly statistics limited., Also, in four dimen- -
sions the linear lattice dimension is necessarily limited; the largest
thus far simulated having 16 sites on a side.! Finally, although
fermionic fields are being studied extensively, the techniques for
handling Grassmann variables are as yet rather awkward.

Before proceeding I would like to emphasize one well known but
not fully appreciated point about the standard strong interaction
theory of quark gluon dynamics. In the chiral limit, when the
pseudoscalar meson masses vanish, this theory has no free parameters.
All dimensionless quantities, such as the ratio of the p mass to the
nucleon mass, are in principle determined. This applies even to
quantities such as the pion nucleon coupling constant, once considered
a possible basis for a perturbative analysis. This beautiful feature
of the strong interaction theory is in sharp contrast to the plethora
of parameters in theories of the weak and electromagnetic interactions
and unification thereof.

The idea of a zero parameter theory is in a way rather frighten-
ing. If we calculate an observable and get the number wrong, there
is nothing lefr to adjust. If the delta-nucleon mass splitting comes
out wrong, quark gluon dynamics must be abandoned.

Returning now to the lattice theory, the lattice spacing provides
a natural scale on which to measure dimensionful quantities. 1In
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particular, the inverse of the correlation length'g in lattice units
is the mass m of the lightest state in the theory.times the lattice
spacing a

£~ = ma ' (1)

In the continuum limit we wish to take the lattice spacing to zero but
have physical masses remain finite. Thus the correlation length goes
to infinity and we are driven to a critical point of the analogous
statistical system. Using asymptotic freedom, we can trade the lat-
tice spacing with the bare coupling as the parameter of the lattice
theory. Indeed, we know that the bare coupling, which is an effective
coupling at the scale of the lattice spacing, decreases logaritbmically
with the cutoff.

-1

8, (@) = (8 1 (1/a %a%) + (8,/8 )amtn(1/n %) + 0. 2L (@)

Here Bo and Bl are the first two terms in tbe Gell-Mann Low function
d 3 5 7
a 37 8,(a) = B8, T Big, + O(go ) (3)

and have been calculated perturbatively.? The dimensionful parameter
AD is an integration constant and provides a natural physical scale

in which to measure dimensionful observables. Its value will depend
on the details of the cutoff scheme but a perturbative analysis can
relate any convention to some standard one.?

We can now take eq. (2) and solve it for the lattice spacing and
thus obtain a prediction for the weak coupling behavior of the inverse
correlation length
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Note the essential singularity at vanishing coupling. This shows that
the spontaneous generation of masses in quark-gluon dynamics is in-
herently non-perturbative. The basic idea of a lattice calculation

is to measure some dimensionful quantity in units of the lattice
spacing and to look for the coupling dependence indicated in eq. (4).
The physical value of the parameter in units of A is then the coeffi-
cient of this behavior..

Although we eagerly await results from the full theory, most work
has thus far been on the pure gluon sector of the theory. Also, be-
cause of the extra complications involved in SU(3), much work has
concentrated on the simpler non-Abelian gauge group SU(2). The first
dimensional parameter extracted from the pure glue theory was the
coefficient of the long range linear interquark potential. In fig. 1
we show an effective force x(I,I) between two quarks separated by I
lattice spacings."® These curves form an envelop representing the
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Fig. 1. The effective force x(I,I) between quark

sources separated by 1 lattice spacings as a function
of the bare charge.

long range constant force K measured in lattice units. Comparing
with the asymptotic freedom gives for SU(3)

A
7;- = (5+1.5) x 1073 (5
Using the relation between A and the more conventional Amom
Vﬁmom = 83.5 A, (6)

and using the string model estimate of K from the Regge slope, we
find
A = 170 + 50 MeV (7)
mom . —_— .

This is comfortingly close to current phenomenological values;



however, the effects of light quarks are ignored in this caleculation. .
‘ A second number characterizing the solution of pure gauge theory.
is the ghysical temperature at which a deconfining phase transition
occurs.> At this temperature space fills with a soup of gluonic flux
and it no longer requires an infinite energy to isolate a source in
the fundamental representation of the gauge group. Kajantie, Montonen
and Pietarinen® have recently studied this transition in Monte Carlo
studies of the SU(3) theory and find

TC M.Amom ) (8)

It is somewhat puzzling in this quarkless theory containing no piomns
that this transition occurs at such a remarkably low temperature,
considerably below a typical hadronic mass.

I now turn to a number which has been frustratingly difficult to
extract from the Monte Carlo amalysis. This is the mass gap or corre-
lation length in the pure glue theory. Thus far attempts to measyre
this "glueball” mass have been limited to the SU(2) theory. Plagued
by statistical errors, early estimates!’7 gave

m v 1-4 /K (9)

. Indeed, this is one area where the strong coupling expansion approach
may beat the Monte Carlo; Miinster has quoted® values for both SU(2)
and SU(3) .

m= 1.8 + .8 vk SU(2)
(10)
m=2.9+ .8 /&K=134+0.4Gv 5U@3)

This latter value is quite acceptable phenomenologically.

I would now like to briefly discuss an ongoing attempt by
Brower, Nauenberg and myself to extract this number in a novel way.?
The basic idea is that effects of a finite lattice size should fall
exponentially with the lattice dimension in units of the correlation
length. Thus motivated, we accurately measured!? the internal emergy
for various finite lattices up to 10%. A straightforward transfer
matrix analysis relates the internal energy per plaquette on an N*
lattice to that on an infinite lattice

2 r (ma)s/2

P(N) = P(x) -
481r80 N3/2

TN ) 4 O(E%)) (11)

lere the only unknowns are the mass m and the factor r, which repre-
sents the degenmeracy of the first glueball state. A spin s state
contritubes 2s+l to xr. Although in principle for a large enough lat-
tice only the lightest state will survive, in practice we should ex-
pect finite size effects from a superposition of several low lying
states. Indeed, the degeneracy factor suggests that a spin two state
may dominate over a lighter spin zero particle.
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. The observed flnlte size effects are small, only clearly observ-
able up to about a 6* lattice, Using lattices larger or equal to 4
sites, the data does not permit determining r and ma separately for
each value of coupling. Even though small, the signal is too large

for the degeneracy factor in eq. (11) to be unity. Indeed, a simple
fit suggests v v 10-30. The mass value obtained is strongly correlated
- with the degeneracy, but for r in this range '

= (150 + 50)A_ = 1.9 + .6 K

adequately fits the asymptotic freedom prediction.

We thus conclude that the mass is still hard to measure, but the
spectrum must be extremely rich. Note that the bag model also pre-
dicts a large number of low lying states, 1l

These, then, are the three theoretically clear parameters which
have been extracted from the Monte Carlo studies. There are, however,
an enormous number of practitioners of this art. Most of the lattice
work has not emphasized the continuum limit, but artifacts of the
lattice theory itself. Indeed, as statistical mechanical systenms,
lattice gauge theories have been found to have a fascinating and
rich phase structure. I will end this lecture by showing two inter-
esting phase diagrams obtained via Monte Carlo techniques.

In fig. 2 1 show the phase diagram for a coupled Z, Higgs-Gauge
system. 12 The parameter B is the inverse gauge coupling and B is a

.
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Fig. 2. The phase diagram for the coupled Z2 spin gauge
system.
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parameter driving a Higgs mechanism. In this model with small By and
large B we have a conventional unconfined phase. In a more realistic
theory with 2 continuum gauge group this phase would possess massless
gauge bosons. As By is increased one leaves this phase through a
Higgs transition. Alternatively, at fixed 8yg» We can pass through a
confining transition at strong gauge coupling as B is decreased. Note,
however, that the Higgs and confinement phases are smoothly connected
around a critical point. This is an example of a mechanism described
by Fradkin and Shenker, 13 whereby whenever Higgs fields lie in the
fundamental representation of the gauge group, the confinement and
Higgs phases are qualitatively the same. Thus the standard electro-
weak theory may have equivalent but superficially disjoint descrip--
tions.

In fig. 3 I show a phase diagram for a pure SU(2) gauge theory
but with the lattice action characterized by two parameters.!® The
action per plaquette is

' 1 1
Sq= B (1 - 5 Trlp) + 8, (1 - 3 Tr,Up)

Here U, is the group element associated with the plaquette in question,
and Tr and Trp represent traces taken in the fundamental and adjoint
representations respectively. For By = 0 we have the standard Wilson
SU(2) theory whereas for B = 0 we have an S0(3) lattice gauge model.
As Bp goes to infinity, the model approaches the pure Zs theory.

-

B

Fig. 3. The phase diagram with a generalized SU{2) actiom.




The rich structure with its triple point and new critical point
demonstrates the naivety of the old lore that non-Abelian gauge
theories have no phase transitions. This structure, however, appears
to be purely a lattice artifact and is irrelevant to countinuum
physics.  The lattice theory should not be trusted phenomenologically
when the lattice spacing becomes comparable to hadronic dimensioms.

: In the last year unexpected phase transitions!® have been found
for the S0(3) and SU(N) for N > 4 lattice models. Indeed, Su(2) and
SU(3) are the only kmown groups showing a smooth passage from strong

" to weak coupling. The SO(3) transition has been described in terms
of a monopole condensation.!® The large N transitions are probably
closely related in that the Wilson action has several lccal minima
beyond the vanishing fields of the classical limit. Tunnelling into
these minima can generate approximate monopole configurations which
may condense as in SO(3). If this is a correct picture, modifying
the Wilson action to eliminate the metastability of such configura-
tions should remove the SU(N) transitioms. This is currently under
investigation.

In conclusion, the past few years have been extremely exciting
for the lattice theory. New results have been appearing faster than
we can absorb them, Although we have calculated only a few parameters
of the continuum theory, these are remarkable numbers indeed. They
characterize non-pefturbative aspects of the solution of a non-trivial
four dimensional field theory.
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