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Monte Carlo simulations are used to calculate Wilson loops for pure SU(3) gauge theory on a
6* lattice. Previous measurements of the scale parameter Aq are improved.

The gauge group SU(3) has been examined in
several recent Monte Carlo studies.!™ In Ref. 1 for
instance most of the data were generated on 4* lat-
tices with one data point generated on a 6* lattice.
Since SU(3) is the gauge group of quantum chromo-
dynamics (QCD), it is reasonable to improve our
data sample and hence make a more accurate deter-
mination of the Ag scale parameter. In the present
paper, we report Monte Carlo simulations on a 6* lat-
tice at 57 values of the inverse temperature and
determine all Wilson loops up to size 3 x 3.

We work in a hypercubical lattice in four Euclidean
dimensions.*> On the link {ij} joining nearest-
neighbor lattice sites signified by /and jsits an N X N
unitary-unimodular matrix Uy of the group SU(N),
with the condition that

(/ﬂ=(Uu)—l .

We define our partition function by
zp=f

where B is the inverse temperature given by 8
=2N/gy? with g the bare coupling constant. The

[]_[]dU,y]exp(—BS[U]) ,
iJ

measure in the above integral is the SU(N) normal-
ized invariant Haar measure. The action S is defined
as the sum over all unoriented plaquettes O such that

S[U1=3 .= 2[1 —LNReTrUD
a a

Here Uy is the parallel transporter around a pla-
quette. Periodic boundary conditions were used
throughout our calculations and the lattice was put in
equilibrium by the method of Metropolis et al.¢
From now on we specialize to N =3.

We define the rectangular Wilson loops’ by the ex-
pectation value

W(L) =5 (ReTrUc) ,

where the I by J closed rectangular contour is denot-
ed by Cand U¢ is the parallel transporter or product
of link variables around C. The leading-order high-
temperature expansion for the Wilson loop is

w(LJ) =(p/18)" , o))

while the leading-order low-temperature expansion
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FIG. 1. The average action per plaquette (E) for pure SU(3) gauge theory on a 6* lattice as a function of the inverse tempera-
ture B. The curves represent the leading-order high- and low-temperature expansions of Egs. (1) and (2), respectively.
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FIG. 2. The evolution of the average action per plaquette (£) for pure SU(3) gauge theory on a 6* lattice as a function of the
number of iterations through the lattice for mixed-phase starting lattices for various values of the inverse temperature 8.

for the average action per plaquette is
(EY=1-Ww(1,1)=2/B+0(B™) )
For asymptotically large Wilson loops we expect

W ~exp(—A4 — K xarea — C X perimeter) ,

where for a given 8, 4, K, and C are constants.
When the asymptotic behavior applies, we extract the
string tension K by evaluating the quantity

wWULHIWU—-1,J-1)

XD ==l O W =1 |

The leading-order high-temperature expansion for
the string tension is given by

x(1J) =—in(B/18) + 0(B?) 3)

Asymptotic freedom determines how the lattice
spacing varies with bare coupling for a continuum
limit. This introduces a scale parameter Ag defined
by

1
2y080* (@)

_71/2702)

. (
Ap=lim L[yogoz(a)] exp
a=—0a

],(4)

averaged over the next 100 iterations through the lat-
tice. We used disordered starting lattices for 8 =5.5,
mixed-phase® starting lattices for 5.5 < 8 < 9.0, and
ordered starting lattices for 8 > 9.0. Our results in
Fig. 1 agree well with the leading-order high- and
low-temperature expansions of Egs. (1) and (2),
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where, for SU(3), we have
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and a is the lattice spacing.

In Fig. 1 we show the average action per plaquette
(E) as a function of the inverse temperature on a 6*
lattice. In carrying out these calculations, we first
performed 200 iterations through the 6* lattice with
20 Monte Carlo updates per link. This resulted in
the space-time lattice being in equilibrium. We then
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FIG. 3. The Wilson loops W (1,J) for pure SU(3) gauge
therory on a 6* lattice as a function of the inverse tempera-

ture B. The upward triangles represent / =J =1, the solid
circles represent / =2, J =1, the crosses represent [ =J =2,
the downward triangles represent / =3, J =2, and the
squares represent / =J =3. The curves represent the
leading-order high-temperature expansion of Eq. (1).
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FIG. 4. The string tension X(/,J) for pure SU(3) gauge
theory on a 6% lattice as a function of the inverse tempera-
ture B. The triangles represent / =J =1, the solid circles
represent [ =J =2, the crosses represent / =3, J =2, and the
open circles represent / =J =3. Also shown in the diagram
is the leading-order high-temperature expansion of Eq. (3).

respectively. Figure 2 shows some of the mixed-
phase runs for the average action per plaquette in the
vicinity of the crossover between the high- and low-
temperature regions. In Fig. 3 we show the Wilson
loops up to size 3 X 3. The leading-order high-
temperature expansions are also shown for compar-
ison.

The logarithmic ratios X(1J) for (1,J) =(1,1),
(2,2), (3,2), and (3,3) are shown as a function of the
inverse temperature 8 in Fig. 4(a). Our results agree
with the leading-order high-temperature expansion of
Eq. (3) up to 8=1.0. Obviously, higher-order terms
are needed to bring about agreement with the Monte
Carlo data in a larger range in 8.

In the figure we show a band corresponding to the
behavior of Eq. (4) with

Ao=(6+1) x103VK .

As in our previous analysis, the error is a subjective
estimate. Putting in the Hasenfratz-Hasenfratz® fac-
tor relating Ag to the parameter AMOM characterizing
the momentum-space three-point vertex in the Feyn-
man gauge

AMOM/A =835,
we obtain

AMOM = (0.5 +0.1)VK .

This represents about 200 MeV if we use the Regge
slope to estimate K.
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