
J. Phys. G :  Nucl. Phys. 10 (1984) 867-873. Printed in Great Britain 

The phase diagrams for SU(N)-SU(N)&, N =  3-8, gauge 
theories in four dimensions 

R W B Ardillt, Michael Creutzt and K J M Moriartygll 
t Department of Mathematics, Royal Holloway College, Englefield Green, Surrey 
TW20 OEX, UK 
$ Brookhaven National Laboratory, Upton, New York 11973, USA 
0 Department of Physics, Technion-Israel Institute of Technology, Haifa, Israel 

Received 22 September 1983 

Abstract. By computer simulation, we study SU(N) lattice gauge theory with an action 
containing couplings with the plaquette trace in both the fundamental and adjoint 
representations of the group. We investigate whether such an action will permit continuation 
around the phase transition of the Wilson theory when N exceeds four. By extrapolating this 
transition to where its latent heat vanishes, we locate the corresponding critical points for N 
up to eight. 

The phase structure of lattice gauge theory has been of crucial importance to our 
understanding of quark confinement. The absence of phase transitions in the four- 
dimensional models based on SU(2) (Creutz 1979) and SU(3) (Creutz and Moriarty 
1982b, Ardill et a1 1983a) indicates that the linear interquark potential at large separations 
persists from the strong-coupling into the weak-coupling domain. Recently, this simple 
picture acquired a fascinating complication with the discovery of phase transitions in the 
Wilson theory when the gauge group is SU(N) with N > 4  (Creutz 1981, Moriarty 1981, 
Bohr and Moriarty 1981, Creutz and Moriarty 1982a). It was suggested by Creutz (1981) 
that these transitions were not deconfining, but could be continued around in a larger 
coupling space. It was later found that SU(2) (Halliday and Schwimmer 1981a, b, 
Greensite and Lautrup 1981, Bhanot and Creutz 1981) and SU(3) (Bhanot 1982) theories 
possessed a rich phase structure with such an extension. In this paper, we investigate 
l a r g e r 4  models with both fundamental and adjoint couplings and find evidence that the 
transition with the Wilson action is indeed spurious and is easily continued around. 

We work on a hypercubical lattice in four Euclidean space-time dimensions. Our 
action is 

where U, is the product of link variables around a plaquette. Periodic boundary conditions 
are used throughout the calculation. The first term in equation (1) is the usual Wilson 
action while the second term, up to an additive constant, sums plaquette traces in the 
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adjoint representation. We define our partition function by 

and our order parameters by 

1 i3F 1 
( E )  = 1 - - - = 1 -- (Re Tr U,) 

N p  aP N 

and 

where F is the free energy, N,, is the number of plaquettes in the lattice and TrA denotes the 
adjoint character. In the classical continuum limit this action reduces to the conventional 
Yang-Mills theory with bare coupling determined by 

1 N 
2 N  N2- 1 P A  gc2 = - p + - 

Once the system is equilibriated by the method of Metropolis et a1 (1953), we measure the 
average actions per plaquette ( E )  and ( E A )  for the fundamental and adjoint 
representations, respectively. Further details on the calculational procedure can be found 
in the paper by Ardill et a1 (1983b). All our Monte-Carlo simulations were carried out on 
34 lattices, with sampling from a table of 50 SU(N) matrices and 5 hits per link. Such a 
small lattice would be too small for a group as simple as, say, SU(2), but it was argued by 
Creutz (1981) that as N increases, the large group parameter space should partially 
compensate for the small number of space degrees of freedom. This is also supported by 
the recent work with the Eguchi-Kawai model (Eguchi and Kawai 1982; see also Bhanot 
et a1 1982, Bhanot and Moriarty 1983) wherein interesting physics is obtained from a 
one-site lattice. 

Let us consider the qualitative features of the phase diagram resulting from equation 
(1). Now SU(N)/Z,  theory, obtained along the line P= 0, has first-order phase transitions 
(Creutz and Moriarty 1982c) at PA = 6.4 f 0.1, 12.0 f 0.35, 19.5 f 1 . 1  and 32.0 f 1.0 for 
N= 3 , 4 , 5  and 6, respectively. 

These critical points seem to scale in the variable PA/2N2 and we use this to predict the 
SU(N)/Z, critical points for N= 7 and N =  8. For PA = CO, equation (1) becomes a Z, 
gauge theory which has the critical points given in table 1 (taken from Creutz et a1 1979). 
When the corresponding two-coupling system was studied for the group SU(2) by Bhanot 
and Creutz (198 l), it was found that the 2, and SU(2)/Z2 transitions entered the diagram 

Table 1. The critical points for pure ZN gauge theory taken from Creutz et a1 (1979). 

N Critical points in /3 

3 0.67 
4 0.88 
5 1.0, 1.2 
6 1.0, 1.6 
7 1 .o, 2.1 
8 1.0,2.1 
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and met at a triple point, from which another first-order line emerged. These two 
transitions move only slightly from their initial values of P or PA, respectively, before they 
meet. The third line is remarkably straight in its approach to the cross-over region of the 
Wilson theory. We assume that the qualitative features of this upper right quadrant of the 
phase diagram are similar in the higher-N cases. When N is five or more, the 2, theory has 
two phase transitions separated by a Coulomb phase. We assume that these also extend 
into the diagram at approximately constant P. In figure 1 we show the generic form 
assumed for the phase diagram. We use this form to estimate the location of the triple point 
from which the line BC in the diagram emerges. The true triple point should lie somewhat 
below and to the right of this estimate; however, because of the large lever arm, this should 
not strongly influence our conclusions concerning the end-point C. In this paper we do not 
investigate the details of the region around the two triple points A and B. We also leave 
open the question of further structure in the negative PA half plane. 

Recently Bachas and Dashen (1982) speculated that the appearance of the spurious 
transition in these models may correlate with the development of new local minima of the 
plaquette action as a function of the gauge group. They pointed out that .for SU(N) with 
N > 4 the trace of a group element is locally maximised for several elements of the group 
centre other than just the identity. Adding the adjoint coupling to the trace can introduce 

L 

Figure 1. The SU(N)-SU(N)/ZN phase diagram showing the Z N ,  SU(N)/ZN and SU(N) 
critical points, the two triple points A and B and the critical point C. 
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Figure 2. Equilibrium values of ( E )  and ( E A )  starting from disordered ( x ) and ordered (0) 
configurations for various (/3, PA) values along the critical line BC for SU(N)-SU(N)/ZN: 
(a) N =  3; (b )  N =  4; (c)  N =  5; (d )  N =  6 ;  (e) N =  7; (f) N =  8. 

such extra minima for N g 4 .  For SU(N) one can easily verify that the line above which 
extra action minima occur is 

(4) 

Note that for N < 4 this has a positive slope, and N= 4 is a borderline case. The end-points 
of the SU(2) and SU(3) transitions lie near this line (Bhanot 1982). 

These arguments suggest that classical solutions of lattice gauge theory play a role in 
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Table 2. The critical points for SU(N)-SU(N)/ZN gauge theory corresponding to the point 
C in figure 1 along with the intercept of the critical line BC with equations (4) and (5). 
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Intercept of critical Intercept of critical 
N Critical points in (P, PA) line with equation (4) line with equation (5) 
~ 

3 (4.35 i0.10, 1.60i0.10) (5.1, 1.2) 
4 (10.10 f 0.20, -0.20 i 0.20) (10.2,O.O) 
5 (23.0 i 1.0, -8.3 f 1.0) (18.6, -2.8) (27.4, -12.6) 
6 (34.0 i 2.0, -14.0 * 2.0) (29.0, -7.2) (36.6, -17.8) 
7 (46.0 i 3.0, -20.0 f 3.0) (41.2, -12.8) (47.0, -21.6) 
8 (64.0 i 3.0, -32.0 + 3.0) (58.5, -21.4) (66.0, -32.4) 

these spurious transitions. The lowest action classical configuration has all links gauge 
equivalent to the identity. Consider multiplying one link by an element of the group centre 
which is nearest the identity. If we are above the line in equation (4), the action of this new 
configuration will be increased by any small perturbation of the fields. Thus we have a 
local minimum of the action, a classical solution in the conventional sense. A condensation 
of these objects may induce the new transitions. 

Starting with the estimated triple point (point B in figure l), with either an ordered or 
disordered start, we travelled down the straight line BC through the known transition or 
cross-over of the Wilson theory, continuing in equal increments of P until a value 
approximately on the line 

N 2 -  1 
P A  = - T P '  

where the bare coupling becomes infinite, was reached. 

1.0-, 

l l L  1.0 

( 5 )  

L 
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Figures 2(a), (b), (c), ( d ) ,  (e) and (f) show the equilibrium values of ( E )  and ( E A )  
obtained with a hysteresis cycle moving towards the critical point along the line BC of 
figure 1. We used 50 Monte-Carlo iterations per (p, PA) value, with an average over the 
last five iterations. We employed both ordered and disordered starts for our hysteresis 
cycles. For the graphs shown in figure 2 the N =  3 case took about 10 min for either an 
ordered or disordered start and 1 h for N =  7 and 8. 

We observe that near the the critical point the ordered and disordered lines approach 
each other approximately linearly. This was used to estimate the critical points shown in 
table 2. Also given in table 2 are the points obtained by the interception of equations (4) 
and (5) with the critical line BC (of figure 1). From table 2 we can see that as N increases 
the critical end-point C moves below equation (4) and towards equation ( 5 ) .  

Our implementation of the algorithm of Metropolis et al performs badly for large P and 
large negative PA; this can be seen in the disordered start lines in figures 2(e) and (f) for 
N = 7  and 8, respectively, which tend to bend upwards. This is probably due to a poor 
optimisation of parameters on our part. 

In order to confirm that we have indeed located a critical point immediately below 
which the SU(5)-SU(5)/Z5 system behaves smoothly, we perform hysteresis cycles on this 
system for large fixed negative PA including both the strong- and weak-coupling regions. In 
figures 3(a) and (b) we take PA = -1 1.0 and -14.0, respectively. Rather than the first-order 
transition of the Wilson theory, we see only signs of a cross-over reminiscent of the 
conventional SU(2) and SU(3) models. 
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