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ABSTRACT

We consider simulating statistical systems with a random walk
on a constant energy surface. This combines features of determin-
jistic molecular dynamics techniques and conventional Monte Carlo
simulations. For discrete systems the method can be programmed to
run an order of magnitude faster tham other approaches. It does
pot require high quality random numbers and may also be useful for

nonequilibrium studies.

In this talk I.will discuss a new algorithm for simulating
statistical systems , It combines features of canonical Monte
Carlo procedures and microcanonical molecular dynamics calcula-
tions. The method has some advantages over other methods. First
when applied to discrete systems such as the Ising model, it can
give rise to extremely fast programs, as much as an order of magni-
tude faster than other techniques., Second, it does not require
high quality random numbers. Indeed, for Ising systems no external
random numbers are needed at all; the system can generate its own.
Third, the algorithm can be set up so that all energy flow must
occur through the system itself. This results in an energy con-
serving dynamics which may be a useful model for nonequilibrium
phenomena. Fourth, the three sets of beautiful Monte Carle renorm-
alization group results presented at this conference made me
realize that my algorithm can serve to determine coupling constants
on blocked lattices.

This is, after all, a conference on lattice gauge theory, and
my algorithm can easily be applied to these systems., For continu-
ous gauge groups, it brings a lattice into equilibrium in a time
competitive with, but not particularly better than, a good conven-
tional Monte Carlo program. The reason we gain little here is that
most computer time in a gauge theory simulation is spent multiply—
ing neighboring links to calculate the action. The new algorithm
cannot avoid this arithmetic. My unfounded hope is that by delving
into alternative simulation schemes, one may gain insight into new
ways to treat antilcommuting integrals numerically.

Let me begin by reminding you of the two conventional ap—
proaches to the numerical simulation of statistical systems., Filrst
i{s the canonical Monte Carlo method as exemplified in the algorithm
of Metropolis, Rosenbluth, Rosenbluth, Teller, and Teller~ . Here
one sets up a Markov chain of configurations
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Each configuration in this sequence’ is obtained stochastically with
a probability distribution which depends only on the previous
configuration., Thus the algorithm is defined by the probability
matrix M(C',C) for taking configuration C into configuration C'.
This matrix is constructed in such a way that the ultimate
probability density for encountering any given configuration in the
sequence is given by the Boltzmann weight

| P(C) = exp(-BH(C)) (2)

where for particle physies H(C) is the action and for condensed
matter physics it is the energy of configuration C. Thus the
Markov process generates a canonical ensemble of configurations.
In this class of algorithms, I also include the differentia
versions as exemplified by the stochastic Langevin equation .

A molecular dynamics simulation, on the other hand, begins
with storing the coordinates and momenta of a dynamical system, for
example, a set of atoms., Introducing a force law between these
particles, one then numerically integrates Newton's equations of
motion, This sets up a deterministic meandering on the surface of
constant total energy, mimicking .the evelution of a real system.
Note that such an algorithm uses no random numbers. Unless there
is some interesting non-ergodicity, the complexity of the system
will generate its own randomness. Note also that the procedure
makes no reference to the parameter 8. Here the temperature is an
output, not an input. It s usually determined from the equiparti-
tion of energy, which says that the average kinetilc energy per
degree of freedom is kT/2. Callaway and Rahman have introduced
this method to lattice gauge theory by adding a canonical momentum
conjugate to each link variable and setting up a Hamiltonian
dynapics in the fifth dimension of computer time. Polonyi and
Wyld~ have recently advocated using this scheme for fermionic
simulations, as discussed by Polonyi at this conference.

The microcanonical Monte Carlo method combines features of
both these techniques. Here I use a Markov chain of configura-
tions, as in the canonical approach. However, instead of using the
Boltzmann factor to welght changes, I constrain the energy of the
system to be constant. Thus the algorithm consists of a random
walk on the surface of constant energy. In general this surface is
a rather complicated submanifold of the space of all configura-
tions. For certain models, such as the 0(3) o-model or SU(2)
lattice gauge theory, a heat bath Monte Carlo glgorithm can be
easily modified to implement such a constraint . However, for a
general system, it is convenient to introduce an auxiliary vari-
able, referred to as a demon, to transfer energy around the
lattice., This demon carries an energy Ej. To keep the demon
from arbitrarily scrambling the lattice, Ej must be constrained.



Although later I will discuss further constraints, for now I just
require the demon energy to be positive. Including the demon, the
microcanonical "partition function” under study is

2, = EZ>O % §(a(c) + Ey = Eqy) (3)
d

where Eg 1s the action of the surface under consideration. To
simulate this system numerically, we sweep over the lattice vari-
ables along an arbitrary path, as in a conventional Monte Carlo
program. When the demon visits some variable, he attempts to
change it. For example, in a gauge theory the demon will tenta-
tively multiply a link variable by a group element from a table
such as would be used in a Metropolis program. If the new config-
uration has lower action, the demon makes the change and puts the
change of action into his sack

+ H(C) - H(C") (4)

E,+ E

d d
where C and C' are the old and new configurations, respectively.

If the new configuration has higher action, the demon makes the
change if and only if he has enough energy, that is if the right
hand side of (4) is positive. Otherwise he leaves the lattice and
his energy unchanged and proceeds to try another change of the
lattice. As in the usual Metropolis procedure, the demon may try a
fixed number of "hits" on a given variable before moving om to
another; this is often advantageous in gauge theories where consid-
erable arithmetic on the neighbors of a link does not have to be
repeated for each hit,

As with molecular dynamics simulations, the temperature is not
an input parameter. The randomness of the system is determined by
the initial action Eg. The temperature can easily be determined
from the average value of the demon energy. For a large systen,
standard statistical mechanical arguments relate the microcanonical
sum in (3) to the canonical partition function

z= ]  exp(-8(H(C) +E) . (5)
EQ0 C

The demon thus decouples from the system and we have

This equation will receive straightforward modifications if the
spectrum of demon energies is discrete or if additional constraints
are imposed. We remark in passing that an amusing variational
exercise shows that this particular estimate of the temperature
glves-the least variance. This 1is true even for a generalized
demon with an arbitrary density of energy states,



This microcanonical algorithm clearly has close coanections
with the Metropolis et al. technique. Indeed, it is trivial to
take a program using the latter method and convert it to the
former. To go the other direction, one merely has to let the demon
visit a heat bath between updatings. That 1s, if before visiting
some variable the demon energy is replaced with a new value chosen
randomly with a weighting given by the Boltzmann factor

P(E)) = exp(BE)) , N

then the algorithm reduces precisely to that of Ref. (2)}. This
observation has an important consequence for demons making large
jumps on a large lattice, In this case, before visiting any given
gsite the demon will have been wandering on essentially uncorrelated
distant parts of the lattice. As far as the local region of the
new site 1s concerned, the demon has used the distant lattice as a
heat bath and his distribution will appear as in Eq. (7). Thus we
reach the crucial conclusion that locally the-algorithm can be no
worse, or no better than the Metropolis et al procedure in terms of
number of sweeps required to decorrelate lattice configurations.
The microcanonical advantage for discrete systems is that those
sweeps can take much less computer time, for reasons I will discuss
later, v

In ordinary Monte Carlo one picks a value of B and runs the
computer to calculate correlation functions, such as the average
action or emergy. In the microcanonical approach one picks the
action and runs to find the temperature. It is possible to inter-
polate between these extremes by introducing a large number of
demons. A single demon can only carry a small amount of energy
compared to the lattice and thus the lattice energy is essentially
fixed. However, many demons can collectively hold an appreciable
energy. If their number is comparable to the number of degrees of
freedom of the lattice one effectively studies a curve in the
energy versus temperature plane

{H> + a/{B> = const. (8)

where the parameter @ depends on the relative number of demons and
lattice variables. When a is small the simulation becomes micro-
canonical, and when it is large we go over inte a canonical distri-
bution.

In conventional Monte Carlo discussions a condition of detail-
ed balance is usually used to justify an algorithm. It is natural
to ask if a similar condition can be applied to microcanonical
algorithms. On a surface of constant energy the usual detailed
balance condition reduces to the statement that a change from
configuration ¢ to €' should have the same probability as would a
change from C' to C. Actually this is a stronger condition that



necessary, In any stochastic simulation one only needs that the
desired equilibrium distributiom, i.e. Boltzmanmn distribution for
the canonical ensemble or an equidistribution on an energy surface
for microcanonical, be stable under the algorithm, This allows
some rather bizarre moves, For example, in the Ising model simu-
lation to be discussed later in this talk, I have 60 demons repre-
sented by two bit numbers. After each lattice sweep I shuffle the
first bits and then independently the second bits. This will in
general give an entirely new set of demon energies, but the opera-
tion is justified because if all demon energy states are equally
likely, they still will be after the transformation.

Let me now turn to a brief discussion of finite volume effects
in the microcanonical ensemble’. It is, of course, only in the
infinite volume limit that the canonical and microcanonical distri-
butions give the same thermodynamics. There are two effects here
that I would like to discuss. First, consider the demon energy
distribution. When the lattice is large it effectively is a heat
bath interacting with the demon and thus the demon's energy should
be exponentially distributed as in Eq. (7). However, if the lat-
tice is small it is not a perfect heat bath. Indeed, when the
demon has a lot of energy, the lattice has less and is thus some-—
what cooler. The demon's distribution can .be more properly
obtained from the differential equation

(4/dE ) 4n(P(Ep) = = B(Ey, .= Ep = Eg) (9

Here Ep is the total energy of the demon—-lattice system and
Elary 1s the portion of that energy in the lattice. The function
B(E) is the inverse temperature corresponding to a lattice with
energy E. Expanding the right-hand side of (9) about Ep and
solving the resulting equation gives

P(E,) = exp(- BEy - (BEd)Z/(ZCV)) + o(1/v2)) . (10)

Here V is the volume of the lattice and C its specific heat

2
C=- B°/V azlatt/as . (11)

In practice the V'1 correction in (10) is quite small and goes to
zero at critical points where C diverges. A similar correction to
the kinetic energy distribution applies to conventional molecular
dynamics calculations.

Another finite volume phenomenon appears on comparing a
general correlation fumction in the canonical and miecrocanonical
ensembles. Let I be any correlation function of interest. Its
expectation in the microcanonical ensemble is
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T (E) = (12)
M Y 8(H(C) - EV)
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where T(C) is the value of the correlation in configuration C.
Here the demons are implicitly included and I have made the volume
explicit by letting E by the energy density on the lattice. We
wish to compare this quantity with its value in the canconical
ensemble, which can be obtained from a Boltzmann distribution of
microcanonical ensembles

faE p(E,v)rM(E)\e'gEV

BEV y

r.(8) = (13)

[dE p(E,V) e

Here p(E,V) represents the density of states for the system at
energy density E and volume V. Now take this equation and expand
Ty around <E>, the canonical expectation of E at inverse
temperature B, This gives

_ ) G N

2 JE

The second term in this relgtion can be related to the specific
heat via the Einstein-Gibbs~ fluctuation dissipation theorem. Thus
microcanonical and canorical correlation functions differ by the
finite volume correction

C(8)
T (B) =T (<E>) + ==L (
c M 282y 3E

2
2ot

-2
> M(E)) +0(v 9) . (15)

In Ref. (7) this correction was numerically observed for the two
dimensional Ising model. Note that using E” for T reproduces the
fluctuation dissipation theorem.

I have claimed that the microcanonical Monte Carlo procedure
can use substantially less computer time than other methods for
discrete systems., The reason for this is that the algorithm never
needs any floating point operations and all arithmetic can be done
with simple_bit manipulations. Thus one can carry the multi-spin
coding idea” to its ultimate. Even on a conventional serial
machine, simultaneous processing of a number of spins equal to the
length of the computer's words is possible. To see this explicit-
ly, consider simulating the three dimensional Ising model on the
CDC 7600, a computer which uses 60 bit words. On this machine I
store 60 independent spins in each word. For a given x and y
coordinate in the lattice, one word stores all spins with even z
coordinate and another stores those with odd z. Thus the size of
my lattice i1s forced to be 120 in the z direction, although one can



easily generalize the program to any larger multiple of 60. To
store a lattice of dimension I by J by 120 requires 21J words of
memory. My demons, of which there are 60, reside in two further
words, D1 holding the first bits of each demon and D2 the second
bits. Each demon, then, is a two bit npumber and can take on .
values in the set {0,1,2,3}. All energy changes in an Ising model
with an even number of nearest neighbors will be in units of 4.
Removing this factor from the demon energy, I wish to hold constant

E c + 4 Ed (16)

lat

where Eg denotes the total energy of the 60 demons. Being two

bit numbers, the demons have both an upper and lower bound on their
energies. From a general point of view this will still give the
microcanonical ensemble, but one might worry that the extra con—
straint might excessively reject changes, thus slowing convergence.
To see that this 1s not a serious problem, note that the extra
rejectioﬁ rate will depend on the relative Boltzmann weight for a
demon to exceed 3. Including the factor of &4 above, we see that
this effect is of order exp(-lZB). In the three dimensional model
the region of interest ig 8 = 0,22 and thus the extra rejection is
only a few percent.

As all quantities use every bit independently, arithmetic must
be done “transversely”. In other words all operations use only the
Boolean unit, which is effectively 60 jndependent one bit proces~
gsors. To illustrate the nature of the operations, consider some
given spin. The tentative new demon energy assoclated with flip-
ping this spin is

Eé = Ed + (Na - Np)/Z = Ed + Na -3 (17}

where N, and Np are respectively the number of antiparallel and
parallel neighgors to the spin. The first step ig to determine if
a neighbor is antiparallel. If S and S1 denote words representing
60 pairs of neighboring spins, the exclusive or operation S Xor s1
gives a word, call it W, with set bits wherever the respective
spins are antiparallel. As {ndicated in Eq. (17) W should be added
to the cld demon energys. This can be done in a few logical
instructions

B] = Dl xor W

CARRY = D1l and W

B2 = CARRY =xor D2

REJECT = CARRY and D2 (18)

Here Bl and B2 are the first and second bits of the resulting sum
and REJECT is a computer word with set bits indicating an overflow
outside the allowed two bits for the demons. This set of steps is
then repeated for all six spin neighbors and a- few more operations
remove the 3 in Eq. (17). After all of this is done, one can in



one instruction simultaneously update the 60 spins in S
S + 8 xor not REJECT (19)

Similar operations accept or reject the changes in the demons.

Implementing these ideas on a CDC 7600, I update 29 X 106
spins per second (29 "megaflips”), or 24 megaflips while also
accumulating the average demon energy and lattice magnetization.
On a TI 99/4A I obtain 8 kiloflips on a 192 x 256 two dimensional
modf% wlith video display but without measurements. For compari-
son” ; the fastest canonical programs on the CDC 7600 update at 2
to 3 megaflips, an order of magnitude slower. On other commercial
machines, rates of 6 megaflips on the ICL DAP and 10 megaflips on
the CDC Cyber 205 have been achieved. The Santa Barbara Ising
processor, a special purpose machine designed for this problem,
runs at 25 megaflips.

As an empirical demonstration that the scheme works, I will
now show a few results on the 3 dimensional Ising model. Im Fig. 1
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Fig. 1 The nearest neighbor correlation for the three dimensional
Ising model plotted versus the inverse temperature in the
critical region.



I show measurements of the inverse temperature as a function of the
lattice energy in the critical region., These points represent an
average over the last 9000 of 10000 sweeps over a 128 x 128 lattice
The errors were obtained by averaging the data in 1000 iteration
bins and assuming these were independent samples. On the graph are
also four points from the Santa Barbara machine operating on a 64
lattice.. Note both the rather expanded scale in the figure and the
fact that the error bars run perpendicular to the direction they
would in a standard Monte Carlo.

Fig. 2 shows an application of simple renormalization group
ideas to the critical region of this model, If this critical
behavior defines a field theory, then the correlation between spins
should give a two point Greens function of the continuum theory.

In general, however, there may be wave function renormalizations.
These should cancel in the ratlo of two correlations, giving a
gquantity which should remain finite in the continuum limit if the
lengths are kept fixed in physical units. For more details in the
context of a gauge theory application, see Ref. (l). The basic

T T : i
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Fig, 2 The ratio C(L/2)/C(L/4) on a L X L x120 lattice, where C(X)
is the correlation between spins separated by X sites in
the first coordinate. The crosses represent L = 32; the
solid circles, L = 16,



conclusion is that at a critical point such a physical observable
should be scale invariant, that is it should remain unchanged if we
double all relevant lengths. In this figure we consider the ratio
of the correlation of two spins half way around the lattice with
two spins one quarter of the way around. This 1s done for two
lattices with x X y being 16 X 16 and 32 % 32. The nature of the
program makes it difficult to change the z dimension from 120, so

I have kept the other scales much smaller. The correlations are
also calculated in parallel using logic operations as discussed
above., The critical point of the model shows up quite clearly as a
crossing of the two sets of points, This crossover occurs slightly
above the accepted critical beta of .221655, but this discrepancy
may be due to further finite size effects. The relative slope of
the two sets of points at the crossover is related to the exponent
v characterizing the divergence of the correlation length

£ = |a - Bcl“"

I have drawn an “"eyeball™ fit to the larger lattice data and then
drawn the predicted slopes for the smaller lattice for v = 0.6 and
0.7. The data are clearly consistent with the accepted value

v = 0,64, .

Although this program is comparable in speed to the Santa
Barbara processor, it cannot directly compete on this model. This
is because a special purpose processor can be left on for very long
runs without contention from other users. The real advantage of
this new procedure is that it is easily generalized. Being written
for a general purpose computer, it is straightforward to add other
couplings. The mosts amusing way to do this is to add additiomal
demons for each coupling constant. Thus one would generalize the
microcanonical ensemble to place constraints not on just the total
energy, but on each of the independent terms in the Hamiltonian.
The various couplings would then be determined from the average
value of the respective demons. This is potentially useful for
Monte Carlo renormalization group studies, where one wishes to know
the renormalized couplings on a blocked lattice,

As a slight variant on the microcanonical algorithm, one could
let the 60 spins in any word come from 60 independent lattices.
With shift instructions, the demons could transfer energy between
these lattices. Thus one would construct the canonical ensemble
from the microcanonical ome in a textbook fashion, while simultane-
ously gaining 60 times the statistics of a naive non-multi spin-
coded program.

Another amusing variant involves tying the demons to the sites
and not have them move at all. Thus on each lattice site one would
place 3 bits, one for the spin and two for its corresponding demon.
Updating this system in a checkerboard fashiom, i.e. first all even
sites and then all odd ones, one would have a deterministic system
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of cellular automata simulating the Ising model. To conform with
the strict definition of a cellular automaton, the checkerboard up-
dating could be implemented with a fourth bit at each site, initi-
ally set to the site parity and flipping on each update. This bit
would disable the demon when it is not his turn, The net result is
a reversible Ising dynamics where energy transfer around the lat-
tice only takes place through the lattice bonds. This may be use-
ful for studies of nonequilibrium phenomena. Looked at from a
distance, the lattice should simulate the heat equatiom, but with-
out any floating point arithmetic; indeed, the computer would be
doing what it likes best, bit manipulation.

1 would like to draw one general conclusion from this talk.
It is not that specifically this algorithm is a particularly better
way of simulating some systems. Rather the point 1is that there can
be orders of magnitude lurking in new ways of computing things. My
hope 1s that even more orders of magnitude will be found in
radically new techniques for simulating anticommuting fields, an
area where current computer techmology is inadequate for present
algorithms,
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