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Lattice fields and extra dimensions
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Abstract

Lattice gauge theory is now well into its third decade as a major subfield of theoretical particle physics. I open these lattice
sessions with a brief review of the motivations for this formulation of quantum field theory. I then comment on the recent drive
of lattice theorists to include a fictitious “fifth” dimension to treat issues of chiral symmetry and anomalies. 2000 Elsevier
Science B.V. All rights reserved.
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Lattice gauge theory, now a mature subject, contin-
ues to attract considerable attention as a first principles
“solution” of hadronic physics. The basic formulation
goes back to Wilson’s classic 1974 paper [1]. The sub-
ject remained fairly quiet until an explosive growth in
the early 1980’s. The field is currently dominated by
numerical simulations, although there is considerable
opportunity for analytical developments. We now have
an annual lattice conference, moving around the world
and attracting typically over 300 participants.

The goals of the lattice community are indeed
grandiose. We are attempting first-principles calcula-
tions in non-perturbative field theories. Among the
most successful targets are direct calculations of had-
ronic spectra, weak matrix elements relevant to ex-
tracting the parameters of the standard model, and the
parameters of a new phase of matter, the quark gluon
plasma. The next few talks will expand on these cal-
culations. Here I set the stage with a few comments on
the basic formulation, trying to explain why we go to
a lattice at all. I then turn to some exciting recent de-
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velopments driving the community to simulations in
more than four space time dimensions.

So, if space is continuous, why do we go to a
lattice? This is primarily due to two familiar facts.
First is the importance of non-perturbative phenom-
ena in strong interaction physics. Quark confinement
is inherently non-perturbative; an interacting theory of
hadrons is qualitatively different from a perturbation
on free quarks and gluons. Second, quantum field the-
ory is rampant with ultraviolet divergences requiring
regularization. The issue is that most cutoff schemes
are based on perturbation theory. You calculate Feyn-
man diagrams, and when one is infinite you cut it off.
However, Feynman diagrams are perturbation theory.
It is the need for a non-perturbative regularization that
drives us to the lattice.

If you get nothing else from this talk, remember that
the purpose of our space-time lattice is nothing but
a non-perturbative cutoff. It is a mathematical trick.
On a lattice there is a minimum wavelength, given by
the lattice spacinga; see Fig. 1. In Fourier space, this
corresponds to a maximum momentum ofπ/a. The
scheme gives a mathematically well defined system,
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Fig. 1. Lattice gauge theory approximates quark world-lines by
sequences of hops through a four-dimensional lattice. The spacing
must be extrapolated to zero for physical results.

Fig. 2. On each link connecting two nearest neighbors is a 3 by 3
unitary matrixUij ∈ SU(3).

allowing numerical computations. This last point has
come to dominate the field, but at a deeper level is
secondary to providing a definition of the theory.

I now sketch some of the elegant features of
Wilson’s [1] original formulation. The concept of
a gauge theory means different things to different
people. One way to think of a gauge theory is as a
theory of phases. As it travels through space time, a
charged particle’s wave function acquires a phase

Ui,j ∼ exp

(
i

xj∫
xi

Aµ dxµ

)
, (1)

where the line integral is along the path of the particle.
From this point of view, natural lattice variables are
phase factors associated with the links along which
a quark hops. This approach also makes the gener-
alization to a non-Abelian gauge theory particularly
simple; the phases are replaced with unitary matri-
ces. For the strong interactions, on any link connect-
ing nearest neighbors we have a 3 by 3 unitary ma-
trix Uij ∈ SU(3). See Fig. 2. The size of the matrix, 3,
is determined by the empirical spectroscopic fact that
there are 3 quarks in a proton.

For dynamics, we need a field strength analogous
to Fµν in the continuum. Since this is a generalized
curl, we are naturally led to consider small loops. Our

Fig. 3. Multiplying the phase factors around a plaquette gives the
flux through that plaquette. This is used to construct the action.

basic action is a sum over elementary squares, called
“plaquettes”

S =
∫

d4xFµνFµν→−1

3

∑
p

Re Tr(Up), (2)

where the four sides of a given plaquette are multiplied
as in Fig. 3. The variable

Up= U1,2U2,3U3,4U4,1 (3)

represents the flux through the corresponding plaque-
tte.

Given our variables and action, we want to do quan-
tum mechanics. Here the basic approach is via path in-
tegrals. We exponentiate the action and integrate over
everything

Z =
∫
(dU)e−βS. (4)

Since our variables are in a Lie group, it is natural
to define dU as the invariant group measure. The
parameterβ defines the bare gauge charge

β = 6

g2
0

. (5)

Numerical simulation has dominated lattice gauge
theory for most of its history. The algorithms derive
from the mathematical equivalence of our path inte-
gral with a partition function in statistical mechan-
ics. In this analogy, the link variables correspond to
spins, interacting with a four-spin coupling at a “tem-
perature” 1/β . A computer simulation sweeps through
stored configurations of a finite system. With pseudo-
random numbers, the program makes random changes
biased by the Boltzmann weight. This evolution pro-
ceeds towards a set of configurations mimicking “ther-
mal equilibrium”

P(C)∼ e−βS. (6)
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What is so enticing about this method is that the
computer memory contains the entire configuration;
in principle the theorist can measure anything desired.
Of course it is not always so simple, Monte Carlo
simulations have statistical fluctuations. Theorists are
faced with the novel situation of having error bars!

In addition to the statistical errors are several
sources of systematic uncertainties. These include
finite volume and finite lattice spacing corrections.
Furthermore, present algorithms only work efficiently
for heavy quarks, requiring quark mass extrapolations.
In addition, many simulations make what is called
a valence approximation for the quark fields. This
neglects feedback of the quark fields on the gluons,
saving perhaps two orders of magnitude in computer
time.

A full inclusion of dynamical quark fields remains
not completely understood. Some problems arise di-
rectly from the anti-commuting nature of fermion
fields. The path integral is no longer a classical statis-
tical mechanics problem, but involves operator manip-
ulations in a Grassmann space. This complication is
usually evaded by integrating the fermionic fields an-
alytically as a determinant via the famous formula [2]

Z =
∫

dAdψ̄ dψ exp
(
Sg + ψ̄(D+m)ψ

)
=
∫

dA eSg
∣∣D+m∣∣. (7)

This determinant, however, is of an extremely large
matrix, tedious to calculate. While many clever tricks
have been developed, existing schemes remain, in my
opinion, ugly and awkward.

The fermion issue becomes considerably worse
when a chemical potential is present. This is the case
for studies of a background baryon density. Then the
determinant is not positive-definite, wreaking havoc
with Monte Carlo methods. In this case, except for
very small systems or special toy models, no viable
simulation algorithms are known. This is the primary
unsolved conceptual problem in lattice gauge theory.

In addition to the algorithmic issues, fermion fields
raise fascinating questions in connection with chiral
symmetry. Here the difficulties are intertwined tied
with the so called “chiral anomalies” of quantum field
theory. Of the extensive recent activity in this area, my
favorite approaches involve extending space-time to
more than four dimensions, making our 4D world an

Fig. 4. The basic ladder molecule discussed in the text.

Fig. 5. Applying a field of one half flux unit per plaquette gives
phases on the bonds. One convenient gauge choice is shown here.

interface in 5D. I turn to this subject for the remainder
of this talk.

To see how these higher-dimensional schemes work,
I sneak up on the problem by studying an amusing lad-
der molecule in an applied field [3]. Consider two rows
of atoms connected by vertical, horizontal, and diag-
onal bonds, as sketched in Fig. 4. On such a lattice,
an electron initially placed on one atom will spread
through the lattice much like water poured in a cell
of a metal ice cube tray (Feynman used this analogy
in his Caltech lectures of the mid 60’s). Now apply a
magnetic field of strength one half flux unit per pla-
quette orthogonal to the plane of this molecule. This
introduces gauge dependent phases on the bonds; one
convention for these factors is shown in Fig. 5.

Through interference effects, the magnetic field
inhibits the spreading of an electron’s wave function.
One consequence is a pair of special states bound
on the ends of the ladder. One corresponding wave
function is shown in Fig. 6. A symmetric state is bound
on other end; its wave function is obtained by inverting
this figure.

Symmetry considerations drive these special states
to zero energy. The ends of the chain are symmetric
under a flip of the system around an axis parallel to
the field; so, the end states must have equal energy
EL = ER. On the other hand, the overall sign of
the Hamiltonian can be flipped in two steps. First
make a gauge change by multiplying all fermion
operators on the lower side of the ladder by−1. This
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Fig. 6. The wave function for a zero energy state bound on the end
of the ladder molecule.

changes the signs of all vertical and diagonal bonds.
Then change the signs of the horizontal bonds with a
left–right interchange of the ladder ends. The overall
modification impliesEL = −ER. The only way both
conditions can be true is if the states are at exactly zero
energy.

This symmetry argument shows that these zero
modes are robust under renormalizations. No fine
tuning of bond strengths is required. If the chain is
not infinitely long, there can be a small, exponentially
suppressed, mixing of these states. This will result in
energiesE ∼ e−αL, where the parameterα depends on
the details of the bond strengths andL is the length of
the chain.

These zero modes lie at the heart of the domain-wall
fermion approach [4]. We promote the spinor compo-
nents of a Dirac field on each space time site into a
chain as discussed above. One can imagine the chain
extending into a fictitious “fifth” dimension. The “zero
modes” are then interpreted as the physical quarks.
The basic picture is sketched in Fig. 7. The robust na-
ture of these zero modes means that massless fermi-
ons remain so when interactions are turned on. Any
mass renormalization is proportional to the bare mass,
with no additive contributions. This is precisely the
role played by chiral symmetry in the “continuum”.

Going back to the ladder analogy, it is easy to see
why these modes are automatically chiral. For this
we first create a “device” by joining one such ladder
onto the side of another, as illustrated in Fig. 8. In
this figure, the side chain is our fifth dimension, while
the straight chain represents one of the physical space-
time dimensions. We augment the model, replacing the
factors ofi on the horizontal spatial bonds withi times
a Pauli spin matrix. The direction in which a surface
mode moves is then determined by the direction of
its spin. This device is a helicity separator. For more
details, see Ref. [3].

Fig. 7. For domain-wall fermions, our four-dimensional world is
interpreted as a surface on a five-dimensional manifold. Zero modes
on this surface are the physical quark degrees of freedom.

Fig. 8. A device constructed by joining ladder molecules. Inserting
Pauli matrices in the spatial directions creates a helicity filter.

I now remark on the exact symmetries of this
domain-wall formalism. The zero modes require a
surface to exist. If we were to follow the old Kaluza–
Klein [5] picture and curl the fifth dimension up into
a circle, they would be eliminated. We must cut the
circle somewhere, as in Fig. 9. If the size of the extra
dimension is finite, the modes mix slightly. Indeed,
this is crucial because otherwise there would be no
anomalies.

For two flavors, I can obtain the needed zero modes
by cutting the circle twice, as in Fig. 10. Now there is
one exact chiral symmetry coming from the fact that
the fifth dimension involves two topologically distinct
pieces. Following the notation from the figure, the
number ofuL + dR particles is absolutely conserved,
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Fig. 9. A compact fifth dimension must be cut in order to generate
the chiral zero modes of the domain-wall formalism.

Fig. 10. Cutting the compact fifth dimension twice gives two
flavors of fermion. With the identifications here, one flavored chiral
symmetry is exact, even when the lattice spacing and the size of the
fifth dimension are finite.

as isuR+ dL. In more usual notation, the axial-vector
current

j3
µ5=ψγµγ5τ

3ψ (8)

is rigorously conserved, even with finiteL5. There
does, however, remain a small flavor breaking. Since
they are different components of the same fields,uL
anddR will have an exponentially suppressed mixing.
This existence of one rigorous chiral symmetry and
a small flavor breaking is reminiscent of Kogut–
Susskind [6] fermions; however, now we have the
length of the fifth dimension to control the size of the
flavor breaking.

This scheme gives two flavors from a single five-
dimensional field. This naturally leads to speculations
about more zero modes and more complicated mani-
folds. Could this be a route to the flavor/family struc-

Fig. 11. Perhaps all fermions in a generation are special modes of
a single higher-dimensional field. Here the three quark fields might
represent different values of the internalSU(3) symmetry, andL
could represent a lepton from the same family.

Fig. 12. One specific model with three quark colors and a lepton all
being manifestations of a single five-dimensional fermion field.

ture of the standard model? Fig. 11 sketches a concep-
tual scheme for obtaining three colors of quark and a
lepton from a single field.

The question mark in this figure must involve some
mechanism for the baryon decay anomaly of the ’t
Hooft process. Also, for gauge invariance, appropriate
quantum numbers should be transferred between the
various singularities giving the physical fermions. One
proposed scheme is sketched in Fig. 12, representing
the rendition of the model of [7] as presented in [8].

In conclusion, I hope I have convinced you that the
lattice provides a powerful non-perturbative regular-
ization, allowing controlled calculations of hadronic
processes. I am occasionally asked if the lattice might
actually be real. I don’t particularly like this option,
which would lead to an uncomfortable flexibility. Re-
quiring a continuum limit should limit physical results
to renormalizable field theories. Of course, ultimately
experiment will have to decide.
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Despite the maturity of the field, old unresolved
fermion issues remain. The existing algorithms are
rather awkward, and none are known for dealing with a
background baryon density. Chiral gauge theories re-
main controversial, but domain-wall fermions appear
to be making progress. Some more speculative ques-
tions on which the lattice may eventually shed light
are whether mirror species [9], such as massive right
handed neutrinos, should exist, and whether true chiral
theories must be spontaneously broken, as observed in
the standard model.

I hope I have at least amused you about the helpful
nature of extra dimensions for chiral symmetry. There
is some hope that similar techniques can give natural
lattice formulations of super-symmetry; an intriguing
scheme [10] has been proposed for a lattice formu-
lation of super-symmetric Yang–Mills theory, where
the low energy spectrum has all masses protected from
fine tuning. Of course, the use of extra dimensions also
suggests connections with the recent activities in string
theory. Chiral fermions on higher-dimensional mem-
branes are in much the same spirit as the domain-wall
fermion approach.

So, well into its third decade, lattice gauge theory
remains a thriving industry. While dominated by
numerical work, the field is considerably broader. The
unsolved problems, particularly with fermionic fields,
show that despite the maturity of the subject we still
need new ideas!
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